Metamath Proof Explorer


Theorem sylanblc

Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)

Ref Expression
Hypotheses sylanblc.1
|- ( ph -> ps )
sylanblc.2
|- ch
sylanblc.3
|- ( ( ps /\ ch ) <-> th )
Assertion sylanblc
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 sylanblc.1
 |-  ( ph -> ps )
2 sylanblc.2
 |-  ch
3 sylanblc.3
 |-  ( ( ps /\ ch ) <-> th )
4 3 biimpi
 |-  ( ( ps /\ ch ) -> th )
5 1 2 4 sylancl
 |-  ( ph -> th )