Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylanblc.1 | |- ( ph -> ps ) |
|
sylanblc.2 | |- ch |
||
sylanblc.3 | |- ( ( ps /\ ch ) <-> th ) |
||
Assertion | sylanblc | |- ( ph -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanblc.1 | |- ( ph -> ps ) |
|
2 | sylanblc.2 | |- ch |
|
3 | sylanblc.3 | |- ( ( ps /\ ch ) <-> th ) |
|
4 | 3 | biimpi | |- ( ( ps /\ ch ) -> th ) |
5 | 1 2 4 | sylancl | |- ( ph -> th ) |