Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanblc.1 | |- ( ph -> ps ) |
|
| sylanblc.2 | |- ch |
||
| sylanblc.3 | |- ( ( ps /\ ch ) <-> th ) |
||
| Assertion | sylanblc | |- ( ph -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanblc.1 | |- ( ph -> ps ) |
|
| 2 | sylanblc.2 | |- ch |
|
| 3 | sylanblc.3 | |- ( ( ps /\ ch ) <-> th ) |
|
| 4 | 3 | biimpi | |- ( ( ps /\ ch ) -> th ) |
| 5 | 1 2 4 | sylancl | |- ( ph -> th ) |