Metamath Proof Explorer


Theorem sylanblrc

Description: Syllogism inference combined with a biconditional. (Contributed by BJ, 25-Apr-2019)

Ref Expression
Hypotheses sylanblrc.1
|- ( ph -> ps )
sylanblrc.2
|- ch
sylanblrc.3
|- ( th <-> ( ps /\ ch ) )
Assertion sylanblrc
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 sylanblrc.1
 |-  ( ph -> ps )
2 sylanblrc.2
 |-  ch
3 sylanblrc.3
 |-  ( th <-> ( ps /\ ch ) )
4 2 a1i
 |-  ( ph -> ch )
5 1 4 3 sylanbrc
 |-  ( ph -> th )