Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylancb.1 | |- ( ph <-> ps ) |
|
sylancb.2 | |- ( ph <-> ch ) |
||
sylancb.3 | |- ( ( ps /\ ch ) -> th ) |
||
Assertion | sylancb | |- ( ph -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylancb.1 | |- ( ph <-> ps ) |
|
2 | sylancb.2 | |- ( ph <-> ch ) |
|
3 | sylancb.3 | |- ( ( ps /\ ch ) -> th ) |
|
4 | 1 2 3 | syl2anb | |- ( ( ph /\ ph ) -> th ) |
5 | 4 | anidms | |- ( ph -> th ) |