Metamath Proof Explorer


Theorem sylancb

Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)

Ref Expression
Hypotheses sylancb.1
|- ( ph <-> ps )
sylancb.2
|- ( ph <-> ch )
sylancb.3
|- ( ( ps /\ ch ) -> th )
Assertion sylancb
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 sylancb.1
 |-  ( ph <-> ps )
2 sylancb.2
 |-  ( ph <-> ch )
3 sylancb.3
 |-  ( ( ps /\ ch ) -> th )
4 1 2 3 syl2anb
 |-  ( ( ph /\ ph ) -> th )
5 4 anidms
 |-  ( ph -> th )