Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylancb.1 | |- ( ph <-> ps ) |
|
| sylancb.2 | |- ( ph <-> ch ) |
||
| sylancb.3 | |- ( ( ps /\ ch ) -> th ) |
||
| Assertion | sylancb | |- ( ph -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylancb.1 | |- ( ph <-> ps ) |
|
| 2 | sylancb.2 | |- ( ph <-> ch ) |
|
| 3 | sylancb.3 | |- ( ( ps /\ ch ) -> th ) |
|
| 4 | 1 2 3 | syl2anb | |- ( ( ph /\ ph ) -> th ) |
| 5 | 4 | anidms | |- ( ph -> th ) |