Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylancbr.1 | |- ( ps <-> ph ) |
|
sylancbr.2 | |- ( ch <-> ph ) |
||
sylancbr.3 | |- ( ( ps /\ ch ) -> th ) |
||
Assertion | sylancbr | |- ( ph -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylancbr.1 | |- ( ps <-> ph ) |
|
2 | sylancbr.2 | |- ( ch <-> ph ) |
|
3 | sylancbr.3 | |- ( ( ps /\ ch ) -> th ) |
|
4 | 1 2 3 | syl2anbr | |- ( ( ph /\ ph ) -> th ) |
5 | 4 | anidms | |- ( ph -> th ) |