Metamath Proof Explorer


Theorem sylancbr

Description: A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004)

Ref Expression
Hypotheses sylancbr.1
|- ( ps <-> ph )
sylancbr.2
|- ( ch <-> ph )
sylancbr.3
|- ( ( ps /\ ch ) -> th )
Assertion sylancbr
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 sylancbr.1
 |-  ( ps <-> ph )
2 sylancbr.2
 |-  ( ch <-> ph )
3 sylancbr.3
 |-  ( ( ps /\ ch ) -> th )
4 1 2 3 syl2anbr
 |-  ( ( ph /\ ph ) -> th )
5 4 anidms
 |-  ( ph -> th )