Metamath Proof Explorer


Theorem sylancl

Description: Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypotheses sylancl.1
|- ( ph -> ps )
sylancl.2
|- ch
sylancl.3
|- ( ( ps /\ ch ) -> th )
Assertion sylancl
|- ( ph -> th )

Proof

Step Hyp Ref Expression
1 sylancl.1
 |-  ( ph -> ps )
2 sylancl.2
 |-  ch
3 sylancl.3
 |-  ( ( ps /\ ch ) -> th )
4 2 a1i
 |-  ( ph -> ch )
5 1 4 3 syl2anc
 |-  ( ph -> th )