Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | syland.1 | |- ( ph -> ( ps -> ch ) ) |
|
syland.2 | |- ( ph -> ( ( ch /\ th ) -> ta ) ) |
||
Assertion | syland | |- ( ph -> ( ( ps /\ th ) -> ta ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syland.1 | |- ( ph -> ( ps -> ch ) ) |
|
2 | syland.2 | |- ( ph -> ( ( ch /\ th ) -> ta ) ) |
|
3 | 2 | expd | |- ( ph -> ( ch -> ( th -> ta ) ) ) |
4 | 1 3 | syld | |- ( ph -> ( ps -> ( th -> ta ) ) ) |
5 | 4 | impd | |- ( ph -> ( ( ps /\ th ) -> ta ) ) |