Metamath Proof Explorer


Theorem syland

Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)

Ref Expression
Hypotheses syland.1
|- ( ph -> ( ps -> ch ) )
syland.2
|- ( ph -> ( ( ch /\ th ) -> ta ) )
Assertion syland
|- ( ph -> ( ( ps /\ th ) -> ta ) )

Proof

Step Hyp Ref Expression
1 syland.1
 |-  ( ph -> ( ps -> ch ) )
2 syland.2
 |-  ( ph -> ( ( ch /\ th ) -> ta ) )
3 2 expd
 |-  ( ph -> ( ch -> ( th -> ta ) ) )
4 1 3 syld
 |-  ( ph -> ( ps -> ( th -> ta ) ) )
5 4 impd
 |-  ( ph -> ( ( ps /\ th ) -> ta ) )