Description: A syllogism deduction. (Contributed by NM, 15-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syland.1 | |- ( ph -> ( ps -> ch ) ) |
|
| syland.2 | |- ( ph -> ( ( ch /\ th ) -> ta ) ) |
||
| Assertion | syland | |- ( ph -> ( ( ps /\ th ) -> ta ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syland.1 | |- ( ph -> ( ps -> ch ) ) |
|
| 2 | syland.2 | |- ( ph -> ( ( ch /\ th ) -> ta ) ) |
|
| 3 | 2 | expd | |- ( ph -> ( ch -> ( th -> ta ) ) ) |
| 4 | 1 3 | syld | |- ( ph -> ( ps -> ( th -> ta ) ) ) |
| 5 | 4 | impd | |- ( ph -> ( ( ps /\ th ) -> ta ) ) |