Description: A syllogism inference. (Contributed by NM, 2-May-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylani.1 | |- ( ph -> ch ) |
|
| sylani.2 | |- ( ps -> ( ( ch /\ th ) -> ta ) ) |
||
| Assertion | sylani | |- ( ps -> ( ( ph /\ th ) -> ta ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylani.1 | |- ( ph -> ch ) |
|
| 2 | sylani.2 | |- ( ps -> ( ( ch /\ th ) -> ta ) ) |
|
| 3 | 1 | a1i | |- ( ps -> ( ph -> ch ) ) |
| 4 | 3 2 | syland | |- ( ps -> ( ( ph /\ th ) -> ta ) ) |