Metamath Proof Explorer


Theorem sylanl1

Description: A syllogism inference. (Contributed by NM, 10-Mar-2005)

Ref Expression
Hypotheses sylanl1.1
|- ( ph -> ps )
sylanl1.2
|- ( ( ( ps /\ ch ) /\ th ) -> ta )
Assertion sylanl1
|- ( ( ( ph /\ ch ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 sylanl1.1
 |-  ( ph -> ps )
2 sylanl1.2
 |-  ( ( ( ps /\ ch ) /\ th ) -> ta )
3 1 anim1i
 |-  ( ( ph /\ ch ) -> ( ps /\ ch ) )
4 3 2 sylan
 |-  ( ( ( ph /\ ch ) /\ th ) -> ta )