Description: A syllogism inference. (Contributed by NM, 10-Mar-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanl1.1 | |- ( ph -> ps ) |
|
| sylanl1.2 | |- ( ( ( ps /\ ch ) /\ th ) -> ta ) |
||
| Assertion | sylanl1 | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanl1.1 | |- ( ph -> ps ) |
|
| 2 | sylanl1.2 | |- ( ( ( ps /\ ch ) /\ th ) -> ta ) |
|
| 3 | 1 | anim1i | |- ( ( ph /\ ch ) -> ( ps /\ ch ) ) |
| 4 | 3 2 | sylan | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |