Description: A syllogism inference. (Contributed by NM, 10-Mar-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylanl1.1 | |- ( ph -> ps ) |
|
sylanl1.2 | |- ( ( ( ps /\ ch ) /\ th ) -> ta ) |
||
Assertion | sylanl1 | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl1.1 | |- ( ph -> ps ) |
|
2 | sylanl1.2 | |- ( ( ( ps /\ ch ) /\ th ) -> ta ) |
|
3 | 1 | anim1i | |- ( ( ph /\ ch ) -> ( ps /\ ch ) ) |
4 | 3 2 | sylan | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |