Metamath Proof Explorer


Theorem sylanl2

Description: A syllogism inference. (Contributed by NM, 1-Jan-2005)

Ref Expression
Hypotheses sylanl2.1
|- ( ph -> ch )
sylanl2.2
|- ( ( ( ps /\ ch ) /\ th ) -> ta )
Assertion sylanl2
|- ( ( ( ps /\ ph ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 sylanl2.1
 |-  ( ph -> ch )
2 sylanl2.2
 |-  ( ( ( ps /\ ch ) /\ th ) -> ta )
3 1 adantl
 |-  ( ( ps /\ ph ) -> ch )
4 3 2 syldanl
 |-  ( ( ( ps /\ ph ) /\ th ) -> ta )