Description: A syllogism inference. (Contributed by NM, 1-Jan-2005)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylanl2.1 | |- ( ph -> ch ) |
|
sylanl2.2 | |- ( ( ( ps /\ ch ) /\ th ) -> ta ) |
||
Assertion | sylanl2 | |- ( ( ( ps /\ ph ) /\ th ) -> ta ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl2.1 | |- ( ph -> ch ) |
|
2 | sylanl2.2 | |- ( ( ( ps /\ ch ) /\ th ) -> ta ) |
|
3 | 1 | adantl | |- ( ( ps /\ ph ) -> ch ) |
4 | 3 2 | syldanl | |- ( ( ( ps /\ ph ) /\ th ) -> ta ) |