Description: A syllogism inference. (Contributed by NM, 9-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylanr1.1 | |- ( ph -> ch ) |
|
| sylanr1.2 | |- ( ( ps /\ ( ch /\ th ) ) -> ta ) |
||
| Assertion | sylanr1 | |- ( ( ps /\ ( ph /\ th ) ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanr1.1 | |- ( ph -> ch ) |
|
| 2 | sylanr1.2 | |- ( ( ps /\ ( ch /\ th ) ) -> ta ) |
|
| 3 | 1 | anim1i | |- ( ( ph /\ th ) -> ( ch /\ th ) ) |
| 4 | 3 2 | sylan2 | |- ( ( ps /\ ( ph /\ th ) ) -> ta ) |