Metamath Proof Explorer


Theorem sylbb

Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 30-Mar-2019)

Ref Expression
Hypotheses sylbb.1
|- ( ph <-> ps )
sylbb.2
|- ( ps <-> ch )
Assertion sylbb
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 sylbb.1
 |-  ( ph <-> ps )
2 sylbb.2
 |-  ( ps <-> ch )
3 2 biimpi
 |-  ( ps -> ch )
4 1 3 sylbi
 |-  ( ph -> ch )