Description: A syllogism deduction. (Contributed by NM, 3-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylbid.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| sylbid.2 | |- ( ph -> ( ch -> th ) ) |
||
| Assertion | sylbid | |- ( ph -> ( ps -> th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbid.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | sylbid.2 | |- ( ph -> ( ch -> th ) ) |
|
| 3 | 1 | biimpd | |- ( ph -> ( ps -> ch ) ) |
| 4 | 3 2 | syld | |- ( ph -> ( ps -> th ) ) |