Metamath Proof Explorer


Theorem sylbida

Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024)

Ref Expression
Hypotheses sylbida.1
|- ( ph -> ( ps <-> ch ) )
sylbida.2
|- ( ( ph /\ ch ) -> th )
Assertion sylbida
|- ( ( ph /\ ps ) -> th )

Proof

Step Hyp Ref Expression
1 sylbida.1
 |-  ( ph -> ( ps <-> ch ) )
2 sylbida.2
 |-  ( ( ph /\ ch ) -> th )
3 1 biimpa
 |-  ( ( ph /\ ps ) -> ch )
4 3 2 syldan
 |-  ( ( ph /\ ps ) -> th )