Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sylbida.1 | |- ( ph -> ( ps <-> ch ) ) |
|
sylbida.2 | |- ( ( ph /\ ch ) -> th ) |
||
Assertion | sylbida | |- ( ( ph /\ ps ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbida.1 | |- ( ph -> ( ps <-> ch ) ) |
|
2 | sylbida.2 | |- ( ( ph /\ ch ) -> th ) |
|
3 | 1 | biimpa | |- ( ( ph /\ ps ) -> ch ) |
4 | 3 2 | syldan | |- ( ( ph /\ ps ) -> th ) |