Description: A syllogism deduction. (Contributed by SN, 16-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylbida.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| sylbida.2 | |- ( ( ph /\ ch ) -> th ) |
||
| Assertion | sylbida | |- ( ( ph /\ ps ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbida.1 | |- ( ph -> ( ps <-> ch ) ) |
|
| 2 | sylbida.2 | |- ( ( ph /\ ch ) -> th ) |
|
| 3 | 1 | biimpa | |- ( ( ph /\ ps ) -> ch ) |
| 4 | 3 2 | syldan | |- ( ( ph /\ ps ) -> th ) |