Description: A syllogism inference. (Contributed by NM, 7-Jul-2008) (Proof shortened by Wolf Lammen, 26-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syld3an1.1 | |- ( ( ch /\ ps /\ th ) -> ph ) |
|
| syld3an1.2 | |- ( ( ph /\ ps /\ th ) -> ta ) |
||
| Assertion | syld3an1 | |- ( ( ch /\ ps /\ th ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld3an1.1 | |- ( ( ch /\ ps /\ th ) -> ph ) |
|
| 2 | syld3an1.2 | |- ( ( ph /\ ps /\ th ) -> ta ) |
|
| 3 | simp2 | |- ( ( ch /\ ps /\ th ) -> ps ) |
|
| 4 | simp3 | |- ( ( ch /\ ps /\ th ) -> th ) |
|
| 5 | 1 3 4 2 | syl3anc | |- ( ( ch /\ ps /\ th ) -> ta ) |