Description: A syllogism inference. (Contributed by NM, 20-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syld3an2.1 | |- ( ( ph /\ ch /\ th ) -> ps ) |
|
| syld3an2.2 | |- ( ( ph /\ ps /\ th ) -> ta ) |
||
| Assertion | syld3an2 | |- ( ( ph /\ ch /\ th ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syld3an2.1 | |- ( ( ph /\ ch /\ th ) -> ps ) |
|
| 2 | syld3an2.2 | |- ( ( ph /\ ps /\ th ) -> ta ) |
|
| 3 | simp1 | |- ( ( ph /\ ch /\ th ) -> ph ) |
|
| 4 | simp3 | |- ( ( ph /\ ch /\ th ) -> th ) |
|
| 5 | 3 1 4 2 | syl3anc | |- ( ( ph /\ ch /\ th ) -> ta ) |