Description: A syllogism deduction with conjoined antecedents. (Contributed by Jeff Madsen, 20-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syldanl.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| syldanl.2 | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |
||
| Assertion | syldanl | |- ( ( ( ph /\ ps ) /\ th ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syldanl.1 | |- ( ( ph /\ ps ) -> ch ) |
|
| 2 | syldanl.2 | |- ( ( ( ph /\ ch ) /\ th ) -> ta ) |
|
| 3 | 1 | ex | |- ( ph -> ( ps -> ch ) ) |
| 4 | 3 | imdistani | |- ( ( ph /\ ps ) -> ( ph /\ ch ) ) |
| 5 | 4 2 | sylan | |- ( ( ( ph /\ ps ) /\ th ) -> ta ) |