Metamath Proof Explorer


Theorem syldbl2

Description: Stacked hypotheseis implies goal. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypothesis syldbl2.1
|- ( ( ph /\ ps ) -> ( ps -> th ) )
Assertion syldbl2
|- ( ( ph /\ ps ) -> th )

Proof

Step Hyp Ref Expression
1 syldbl2.1
 |-  ( ( ph /\ ps ) -> ( ps -> th ) )
2 1 com12
 |-  ( ps -> ( ( ph /\ ps ) -> th ) )
3 2 anabsi7
 |-  ( ( ph /\ ps ) -> th )