Metamath Proof Explorer


Theorem sylg

Description: A syllogism combined with generalization. Inference associated with sylgt . General form of alrimih . (Contributed by BJ, 4-Oct-2019)

Ref Expression
Hypotheses sylg.1
|- ( ph -> A. x ps )
sylg.2
|- ( ps -> ch )
Assertion sylg
|- ( ph -> A. x ch )

Proof

Step Hyp Ref Expression
1 sylg.1
 |-  ( ph -> A. x ps )
2 sylg.2
 |-  ( ps -> ch )
3 2 alimi
 |-  ( A. x ps -> A. x ch )
4 1 3 syl
 |-  ( ph -> A. x ch )