Metamath Proof Explorer


Theorem sylgt

Description: Closed form of sylg . (Contributed by BJ, 2-May-2019)

Ref Expression
Assertion sylgt
|- ( A. x ( ps -> ch ) -> ( ( ph -> A. x ps ) -> ( ph -> A. x ch ) ) )

Proof

Step Hyp Ref Expression
1 alim
 |-  ( A. x ( ps -> ch ) -> ( A. x ps -> A. x ch ) )
2 1 imim2d
 |-  ( A. x ( ps -> ch ) -> ( ( ph -> A. x ps ) -> ( ph -> A. x ch ) ) )