Description: Closed form of sylg . (Contributed by BJ, 2-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | sylgt | |- ( A. x ( ps -> ch ) -> ( ( ph -> A. x ps ) -> ( ph -> A. x ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alim | |- ( A. x ( ps -> ch ) -> ( A. x ps -> A. x ch ) ) |
|
2 | 1 | imim2d | |- ( A. x ( ps -> ch ) -> ( ( ph -> A. x ps ) -> ( ph -> A. x ch ) ) ) |