Metamath Proof Explorer


Theorem sylib

Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by NM, 3-Jan-1993)

Ref Expression
Hypotheses sylib.1
|- ( ph -> ps )
sylib.2
|- ( ps <-> ch )
Assertion sylib
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 sylib.1
 |-  ( ph -> ps )
2 sylib.2
 |-  ( ps <-> ch )
3 2 biimpi
 |-  ( ps -> ch )
4 1 3 syl
 |-  ( ph -> ch )