Metamath Proof Explorer


Theorem sylnbir

Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by Wolf Lammen, 16-Dec-2013)

Ref Expression
Hypotheses sylnbir.1
|- ( ps <-> ph )
sylnbir.2
|- ( -. ps -> ch )
Assertion sylnbir
|- ( -. ph -> ch )

Proof

Step Hyp Ref Expression
1 sylnbir.1
 |-  ( ps <-> ph )
2 sylnbir.2
 |-  ( -. ps -> ch )
3 1 bicomi
 |-  ( ph <-> ps )
4 3 2 sylnbi
 |-  ( -. ph -> ch )