Metamath Proof Explorer
Description: A mixed syllogism inference from an implication and a biconditional.
(Contributed by Wolf Lammen, 16-Dec-2013)
|
|
Ref |
Expression |
|
Hypotheses |
sylnib.1 |
|- ( ph -> -. ps ) |
|
|
sylnib.2 |
|- ( ps <-> ch ) |
|
Assertion |
sylnib |
|- ( ph -> -. ch ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sylnib.1 |
|- ( ph -> -. ps ) |
2 |
|
sylnib.2 |
|- ( ps <-> ch ) |
3 |
2
|
biimpri |
|- ( ch -> ps ) |
4 |
1 3
|
nsyl |
|- ( ph -> -. ch ) |