Metamath Proof Explorer


Theorem sylnib

Description: A mixed syllogism inference from an implication and a biconditional. (Contributed by Wolf Lammen, 16-Dec-2013)

Ref Expression
Hypotheses sylnib.1
|- ( ph -> -. ps )
sylnib.2
|- ( ps <-> ch )
Assertion sylnib
|- ( ph -> -. ch )

Proof

Step Hyp Ref Expression
1 sylnib.1
 |-  ( ph -> -. ps )
2 sylnib.2
 |-  ( ps <-> ch )
3 2 biimpri
 |-  ( ch -> ps )
4 1 3 nsyl
 |-  ( ph -> -. ch )