Step |
Hyp |
Ref |
Expression |
1 |
|
sylow1.x |
|- X = ( Base ` G ) |
2 |
|
sylow1.g |
|- ( ph -> G e. Grp ) |
3 |
|
sylow1.f |
|- ( ph -> X e. Fin ) |
4 |
|
sylow1.p |
|- ( ph -> P e. Prime ) |
5 |
|
sylow1.n |
|- ( ph -> N e. NN0 ) |
6 |
|
sylow1.d |
|- ( ph -> ( P ^ N ) || ( # ` X ) ) |
7 |
|
sylow1lem.a |
|- .+ = ( +g ` G ) |
8 |
|
sylow1lem.s |
|- S = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
9 |
|
sylow1lem.m |
|- .(+) = ( x e. X , y e. S |-> ran ( z e. y |-> ( x .+ z ) ) ) |
10 |
|
sylow1lem3.1 |
|- .~ = { <. x , y >. | ( { x , y } C_ S /\ E. g e. X ( g .(+) x ) = y ) } |
11 |
1 2 3 4 5 6 7 8
|
sylow1lem1 |
|- ( ph -> ( ( # ` S ) e. NN /\ ( P pCnt ( # ` S ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) ) |
12 |
11
|
simpld |
|- ( ph -> ( # ` S ) e. NN ) |
13 |
|
pcndvds |
|- ( ( P e. Prime /\ ( # ` S ) e. NN ) -> -. ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) || ( # ` S ) ) |
14 |
4 12 13
|
syl2anc |
|- ( ph -> -. ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) || ( # ` S ) ) |
15 |
11
|
simprd |
|- ( ph -> ( P pCnt ( # ` S ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) |
16 |
15
|
oveq1d |
|- ( ph -> ( ( P pCnt ( # ` S ) ) + 1 ) = ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) |
17 |
16
|
oveq2d |
|- ( ph -> ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) = ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) ) |
18 |
1 2 3 4 5 6 7 8 9
|
sylow1lem2 |
|- ( ph -> .(+) e. ( G GrpAct S ) ) |
19 |
10 1
|
gaorber |
|- ( .(+) e. ( G GrpAct S ) -> .~ Er S ) |
20 |
18 19
|
syl |
|- ( ph -> .~ Er S ) |
21 |
|
pwfi |
|- ( X e. Fin <-> ~P X e. Fin ) |
22 |
3 21
|
sylib |
|- ( ph -> ~P X e. Fin ) |
23 |
8
|
ssrab3 |
|- S C_ ~P X |
24 |
|
ssfi |
|- ( ( ~P X e. Fin /\ S C_ ~P X ) -> S e. Fin ) |
25 |
22 23 24
|
sylancl |
|- ( ph -> S e. Fin ) |
26 |
20 25
|
qshash |
|- ( ph -> ( # ` S ) = sum_ z e. ( S /. .~ ) ( # ` z ) ) |
27 |
17 26
|
breq12d |
|- ( ph -> ( ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) || ( # ` S ) <-> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || sum_ z e. ( S /. .~ ) ( # ` z ) ) ) |
28 |
14 27
|
mtbid |
|- ( ph -> -. ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || sum_ z e. ( S /. .~ ) ( # ` z ) ) |
29 |
|
pwfi |
|- ( S e. Fin <-> ~P S e. Fin ) |
30 |
25 29
|
sylib |
|- ( ph -> ~P S e. Fin ) |
31 |
20
|
qsss |
|- ( ph -> ( S /. .~ ) C_ ~P S ) |
32 |
30 31
|
ssfid |
|- ( ph -> ( S /. .~ ) e. Fin ) |
33 |
32
|
adantr |
|- ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> ( S /. .~ ) e. Fin ) |
34 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
35 |
4 34
|
syl |
|- ( ph -> P e. NN ) |
36 |
4 12
|
pccld |
|- ( ph -> ( P pCnt ( # ` S ) ) e. NN0 ) |
37 |
15 36
|
eqeltrrd |
|- ( ph -> ( ( P pCnt ( # ` X ) ) - N ) e. NN0 ) |
38 |
|
peano2nn0 |
|- ( ( ( P pCnt ( # ` X ) ) - N ) e. NN0 -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) |
39 |
37 38
|
syl |
|- ( ph -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) |
40 |
35 39
|
nnexpcld |
|- ( ph -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) e. NN ) |
41 |
40
|
nnzd |
|- ( ph -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) e. ZZ ) |
42 |
41
|
adantr |
|- ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) e. ZZ ) |
43 |
|
erdm |
|- ( .~ Er S -> dom .~ = S ) |
44 |
20 43
|
syl |
|- ( ph -> dom .~ = S ) |
45 |
|
elqsn0 |
|- ( ( dom .~ = S /\ z e. ( S /. .~ ) ) -> z =/= (/) ) |
46 |
44 45
|
sylan |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> z =/= (/) ) |
47 |
25
|
adantr |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> S e. Fin ) |
48 |
31
|
sselda |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> z e. ~P S ) |
49 |
48
|
elpwid |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> z C_ S ) |
50 |
47 49
|
ssfid |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> z e. Fin ) |
51 |
|
hashnncl |
|- ( z e. Fin -> ( ( # ` z ) e. NN <-> z =/= (/) ) ) |
52 |
50 51
|
syl |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> ( ( # ` z ) e. NN <-> z =/= (/) ) ) |
53 |
46 52
|
mpbird |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> ( # ` z ) e. NN ) |
54 |
53
|
adantlr |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( # ` z ) e. NN ) |
55 |
54
|
nnzd |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( # ` z ) e. ZZ ) |
56 |
|
fveq2 |
|- ( a = z -> ( # ` a ) = ( # ` z ) ) |
57 |
56
|
oveq2d |
|- ( a = z -> ( P pCnt ( # ` a ) ) = ( P pCnt ( # ` z ) ) ) |
58 |
57
|
breq1d |
|- ( a = z -> ( ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
59 |
58
|
notbid |
|- ( a = z -> ( -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
60 |
59
|
rspccva |
|- ( ( A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) /\ z e. ( S /. .~ ) ) -> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
61 |
60
|
adantll |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
62 |
1
|
grpbn0 |
|- ( G e. Grp -> X =/= (/) ) |
63 |
2 62
|
syl |
|- ( ph -> X =/= (/) ) |
64 |
|
hashnncl |
|- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
65 |
3 64
|
syl |
|- ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
66 |
63 65
|
mpbird |
|- ( ph -> ( # ` X ) e. NN ) |
67 |
4 66
|
pccld |
|- ( ph -> ( P pCnt ( # ` X ) ) e. NN0 ) |
68 |
67
|
nn0zd |
|- ( ph -> ( P pCnt ( # ` X ) ) e. ZZ ) |
69 |
5
|
nn0zd |
|- ( ph -> N e. ZZ ) |
70 |
68 69
|
zsubcld |
|- ( ph -> ( ( P pCnt ( # ` X ) ) - N ) e. ZZ ) |
71 |
70
|
ad2antrr |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` X ) ) - N ) e. ZZ ) |
72 |
71
|
zred |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` X ) ) - N ) e. RR ) |
73 |
4
|
ad2antrr |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> P e. Prime ) |
74 |
73 54
|
pccld |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P pCnt ( # ` z ) ) e. NN0 ) |
75 |
74
|
nn0zd |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P pCnt ( # ` z ) ) e. ZZ ) |
76 |
75
|
zred |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P pCnt ( # ` z ) ) e. RR ) |
77 |
72 76
|
ltnled |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) <-> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
78 |
61 77
|
mpbird |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) ) |
79 |
|
zltp1le |
|- ( ( ( ( P pCnt ( # ` X ) ) - N ) e. ZZ /\ ( P pCnt ( # ` z ) ) e. ZZ ) -> ( ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) <-> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) ) ) |
80 |
71 75 79
|
syl2anc |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) <-> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) ) ) |
81 |
78 80
|
mpbid |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) ) |
82 |
39
|
ad2antrr |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) |
83 |
|
pcdvdsb |
|- ( ( P e. Prime /\ ( # ` z ) e. ZZ /\ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) -> ( ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) <-> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || ( # ` z ) ) ) |
84 |
73 55 82 83
|
syl3anc |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) <-> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || ( # ` z ) ) ) |
85 |
81 84
|
mpbid |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || ( # ` z ) ) |
86 |
33 42 55 85
|
fsumdvds |
|- ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || sum_ z e. ( S /. .~ ) ( # ` z ) ) |
87 |
28 86
|
mtand |
|- ( ph -> -. A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
88 |
|
dfrex2 |
|- ( E. a e. ( S /. .~ ) ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> -. A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
89 |
87 88
|
sylibr |
|- ( ph -> E. a e. ( S /. .~ ) ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
90 |
|
eqid |
|- ( S /. .~ ) = ( S /. .~ ) |
91 |
|
fveq2 |
|- ( [ z ] .~ = a -> ( # ` [ z ] .~ ) = ( # ` a ) ) |
92 |
91
|
oveq2d |
|- ( [ z ] .~ = a -> ( P pCnt ( # ` [ z ] .~ ) ) = ( P pCnt ( # ` a ) ) ) |
93 |
92
|
breq1d |
|- ( [ z ] .~ = a -> ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
94 |
93
|
imbi1d |
|- ( [ z ] .~ = a -> ( ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) <-> ( ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) ) |
95 |
|
eceq1 |
|- ( w = z -> [ w ] .~ = [ z ] .~ ) |
96 |
95
|
fveq2d |
|- ( w = z -> ( # ` [ w ] .~ ) = ( # ` [ z ] .~ ) ) |
97 |
96
|
oveq2d |
|- ( w = z -> ( P pCnt ( # ` [ w ] .~ ) ) = ( P pCnt ( # ` [ z ] .~ ) ) ) |
98 |
97
|
breq1d |
|- ( w = z -> ( ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
99 |
98
|
rspcev |
|- ( ( z e. S /\ ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
100 |
99
|
ex |
|- ( z e. S -> ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
101 |
100
|
adantl |
|- ( ( ph /\ z e. S ) -> ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
102 |
90 94 101
|
ectocld |
|- ( ( ph /\ a e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
103 |
102
|
rexlimdva |
|- ( ph -> ( E. a e. ( S /. .~ ) ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
104 |
89 103
|
mpd |
|- ( ph -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |