| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow1.x |
|- X = ( Base ` G ) |
| 2 |
|
sylow1.g |
|- ( ph -> G e. Grp ) |
| 3 |
|
sylow1.f |
|- ( ph -> X e. Fin ) |
| 4 |
|
sylow1.p |
|- ( ph -> P e. Prime ) |
| 5 |
|
sylow1.n |
|- ( ph -> N e. NN0 ) |
| 6 |
|
sylow1.d |
|- ( ph -> ( P ^ N ) || ( # ` X ) ) |
| 7 |
|
sylow1lem.a |
|- .+ = ( +g ` G ) |
| 8 |
|
sylow1lem.s |
|- S = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
| 9 |
|
sylow1lem.m |
|- .(+) = ( x e. X , y e. S |-> ran ( z e. y |-> ( x .+ z ) ) ) |
| 10 |
|
sylow1lem3.1 |
|- .~ = { <. x , y >. | ( { x , y } C_ S /\ E. g e. X ( g .(+) x ) = y ) } |
| 11 |
1 2 3 4 5 6 7 8
|
sylow1lem1 |
|- ( ph -> ( ( # ` S ) e. NN /\ ( P pCnt ( # ` S ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 12 |
11
|
simpld |
|- ( ph -> ( # ` S ) e. NN ) |
| 13 |
|
pcndvds |
|- ( ( P e. Prime /\ ( # ` S ) e. NN ) -> -. ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) || ( # ` S ) ) |
| 14 |
4 12 13
|
syl2anc |
|- ( ph -> -. ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) || ( # ` S ) ) |
| 15 |
11
|
simprd |
|- ( ph -> ( P pCnt ( # ` S ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) |
| 16 |
15
|
oveq1d |
|- ( ph -> ( ( P pCnt ( # ` S ) ) + 1 ) = ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) |
| 17 |
16
|
oveq2d |
|- ( ph -> ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) = ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) ) |
| 18 |
1 2 3 4 5 6 7 8 9
|
sylow1lem2 |
|- ( ph -> .(+) e. ( G GrpAct S ) ) |
| 19 |
10 1
|
gaorber |
|- ( .(+) e. ( G GrpAct S ) -> .~ Er S ) |
| 20 |
18 19
|
syl |
|- ( ph -> .~ Er S ) |
| 21 |
|
pwfi |
|- ( X e. Fin <-> ~P X e. Fin ) |
| 22 |
3 21
|
sylib |
|- ( ph -> ~P X e. Fin ) |
| 23 |
8
|
ssrab3 |
|- S C_ ~P X |
| 24 |
|
ssfi |
|- ( ( ~P X e. Fin /\ S C_ ~P X ) -> S e. Fin ) |
| 25 |
22 23 24
|
sylancl |
|- ( ph -> S e. Fin ) |
| 26 |
20 25
|
qshash |
|- ( ph -> ( # ` S ) = sum_ z e. ( S /. .~ ) ( # ` z ) ) |
| 27 |
17 26
|
breq12d |
|- ( ph -> ( ( P ^ ( ( P pCnt ( # ` S ) ) + 1 ) ) || ( # ` S ) <-> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || sum_ z e. ( S /. .~ ) ( # ` z ) ) ) |
| 28 |
14 27
|
mtbid |
|- ( ph -> -. ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || sum_ z e. ( S /. .~ ) ( # ` z ) ) |
| 29 |
|
pwfi |
|- ( S e. Fin <-> ~P S e. Fin ) |
| 30 |
25 29
|
sylib |
|- ( ph -> ~P S e. Fin ) |
| 31 |
20
|
qsss |
|- ( ph -> ( S /. .~ ) C_ ~P S ) |
| 32 |
30 31
|
ssfid |
|- ( ph -> ( S /. .~ ) e. Fin ) |
| 33 |
32
|
adantr |
|- ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> ( S /. .~ ) e. Fin ) |
| 34 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 35 |
4 34
|
syl |
|- ( ph -> P e. NN ) |
| 36 |
4 12
|
pccld |
|- ( ph -> ( P pCnt ( # ` S ) ) e. NN0 ) |
| 37 |
15 36
|
eqeltrrd |
|- ( ph -> ( ( P pCnt ( # ` X ) ) - N ) e. NN0 ) |
| 38 |
|
peano2nn0 |
|- ( ( ( P pCnt ( # ` X ) ) - N ) e. NN0 -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) |
| 39 |
37 38
|
syl |
|- ( ph -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) |
| 40 |
35 39
|
nnexpcld |
|- ( ph -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) e. NN ) |
| 41 |
40
|
nnzd |
|- ( ph -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) e. ZZ ) |
| 42 |
41
|
adantr |
|- ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) e. ZZ ) |
| 43 |
|
erdm |
|- ( .~ Er S -> dom .~ = S ) |
| 44 |
20 43
|
syl |
|- ( ph -> dom .~ = S ) |
| 45 |
|
elqsn0 |
|- ( ( dom .~ = S /\ z e. ( S /. .~ ) ) -> z =/= (/) ) |
| 46 |
44 45
|
sylan |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> z =/= (/) ) |
| 47 |
25
|
adantr |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> S e. Fin ) |
| 48 |
31
|
sselda |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> z e. ~P S ) |
| 49 |
48
|
elpwid |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> z C_ S ) |
| 50 |
47 49
|
ssfid |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> z e. Fin ) |
| 51 |
|
hashnncl |
|- ( z e. Fin -> ( ( # ` z ) e. NN <-> z =/= (/) ) ) |
| 52 |
50 51
|
syl |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> ( ( # ` z ) e. NN <-> z =/= (/) ) ) |
| 53 |
46 52
|
mpbird |
|- ( ( ph /\ z e. ( S /. .~ ) ) -> ( # ` z ) e. NN ) |
| 54 |
53
|
adantlr |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( # ` z ) e. NN ) |
| 55 |
54
|
nnzd |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( # ` z ) e. ZZ ) |
| 56 |
|
fveq2 |
|- ( a = z -> ( # ` a ) = ( # ` z ) ) |
| 57 |
56
|
oveq2d |
|- ( a = z -> ( P pCnt ( # ` a ) ) = ( P pCnt ( # ` z ) ) ) |
| 58 |
57
|
breq1d |
|- ( a = z -> ( ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 59 |
58
|
notbid |
|- ( a = z -> ( -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 60 |
59
|
rspccva |
|- ( ( A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) /\ z e. ( S /. .~ ) ) -> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 61 |
60
|
adantll |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 62 |
1
|
grpbn0 |
|- ( G e. Grp -> X =/= (/) ) |
| 63 |
2 62
|
syl |
|- ( ph -> X =/= (/) ) |
| 64 |
|
hashnncl |
|- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 65 |
3 64
|
syl |
|- ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
| 66 |
63 65
|
mpbird |
|- ( ph -> ( # ` X ) e. NN ) |
| 67 |
4 66
|
pccld |
|- ( ph -> ( P pCnt ( # ` X ) ) e. NN0 ) |
| 68 |
67
|
nn0zd |
|- ( ph -> ( P pCnt ( # ` X ) ) e. ZZ ) |
| 69 |
5
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 70 |
68 69
|
zsubcld |
|- ( ph -> ( ( P pCnt ( # ` X ) ) - N ) e. ZZ ) |
| 71 |
70
|
ad2antrr |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` X ) ) - N ) e. ZZ ) |
| 72 |
71
|
zred |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` X ) ) - N ) e. RR ) |
| 73 |
4
|
ad2antrr |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> P e. Prime ) |
| 74 |
73 54
|
pccld |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P pCnt ( # ` z ) ) e. NN0 ) |
| 75 |
74
|
nn0zd |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P pCnt ( # ` z ) ) e. ZZ ) |
| 76 |
75
|
zred |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P pCnt ( # ` z ) ) e. RR ) |
| 77 |
72 76
|
ltnled |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) <-> -. ( P pCnt ( # ` z ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 78 |
61 77
|
mpbird |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) ) |
| 79 |
|
zltp1le |
|- ( ( ( ( P pCnt ( # ` X ) ) - N ) e. ZZ /\ ( P pCnt ( # ` z ) ) e. ZZ ) -> ( ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) <-> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) ) ) |
| 80 |
71 75 79
|
syl2anc |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) < ( P pCnt ( # ` z ) ) <-> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) ) ) |
| 81 |
78 80
|
mpbid |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) ) |
| 82 |
39
|
ad2antrr |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) |
| 83 |
|
pcdvdsb |
|- ( ( P e. Prime /\ ( # ` z ) e. ZZ /\ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) e. NN0 ) -> ( ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) <-> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || ( # ` z ) ) ) |
| 84 |
73 55 82 83
|
syl3anc |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) <_ ( P pCnt ( # ` z ) ) <-> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || ( # ` z ) ) ) |
| 85 |
81 84
|
mpbid |
|- ( ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) /\ z e. ( S /. .~ ) ) -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || ( # ` z ) ) |
| 86 |
33 42 55 85
|
fsumdvds |
|- ( ( ph /\ A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> ( P ^ ( ( ( P pCnt ( # ` X ) ) - N ) + 1 ) ) || sum_ z e. ( S /. .~ ) ( # ` z ) ) |
| 87 |
28 86
|
mtand |
|- ( ph -> -. A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 88 |
|
dfrex2 |
|- ( E. a e. ( S /. .~ ) ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> -. A. a e. ( S /. .~ ) -. ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 89 |
87 88
|
sylibr |
|- ( ph -> E. a e. ( S /. .~ ) ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 90 |
|
eqid |
|- ( S /. .~ ) = ( S /. .~ ) |
| 91 |
|
fveq2 |
|- ( [ z ] .~ = a -> ( # ` [ z ] .~ ) = ( # ` a ) ) |
| 92 |
91
|
oveq2d |
|- ( [ z ] .~ = a -> ( P pCnt ( # ` [ z ] .~ ) ) = ( P pCnt ( # ` a ) ) ) |
| 93 |
92
|
breq1d |
|- ( [ z ] .~ = a -> ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 94 |
93
|
imbi1d |
|- ( [ z ] .~ = a -> ( ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) <-> ( ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) ) |
| 95 |
|
eceq1 |
|- ( w = z -> [ w ] .~ = [ z ] .~ ) |
| 96 |
95
|
fveq2d |
|- ( w = z -> ( # ` [ w ] .~ ) = ( # ` [ z ] .~ ) ) |
| 97 |
96
|
oveq2d |
|- ( w = z -> ( P pCnt ( # ` [ w ] .~ ) ) = ( P pCnt ( # ` [ z ] .~ ) ) ) |
| 98 |
97
|
breq1d |
|- ( w = z -> ( ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) <-> ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 99 |
98
|
rspcev |
|- ( ( z e. S /\ ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
| 100 |
99
|
ex |
|- ( z e. S -> ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 101 |
100
|
adantl |
|- ( ( ph /\ z e. S ) -> ( ( P pCnt ( # ` [ z ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 102 |
90 94 101
|
ectocld |
|- ( ( ph /\ a e. ( S /. .~ ) ) -> ( ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 103 |
102
|
rexlimdva |
|- ( ph -> ( E. a e. ( S /. .~ ) ( P pCnt ( # ` a ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 104 |
89 103
|
mpd |
|- ( ph -> E. w e. S ( P pCnt ( # ` [ w ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |