| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow1.x |
|- X = ( Base ` G ) |
| 2 |
|
sylow1.g |
|- ( ph -> G e. Grp ) |
| 3 |
|
sylow1.f |
|- ( ph -> X e. Fin ) |
| 4 |
|
sylow1.p |
|- ( ph -> P e. Prime ) |
| 5 |
|
sylow1.n |
|- ( ph -> N e. NN0 ) |
| 6 |
|
sylow1.d |
|- ( ph -> ( P ^ N ) || ( # ` X ) ) |
| 7 |
|
sylow1lem.a |
|- .+ = ( +g ` G ) |
| 8 |
|
sylow1lem.s |
|- S = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
| 9 |
|
sylow1lem.m |
|- .(+) = ( x e. X , y e. S |-> ran ( z e. y |-> ( x .+ z ) ) ) |
| 10 |
|
sylow1lem3.1 |
|- .~ = { <. x , y >. | ( { x , y } C_ S /\ E. g e. X ( g .(+) x ) = y ) } |
| 11 |
|
sylow1lem4.b |
|- ( ph -> B e. S ) |
| 12 |
|
sylow1lem4.h |
|- H = { u e. X | ( u .(+) B ) = B } |
| 13 |
|
fveqeq2 |
|- ( s = B -> ( ( # ` s ) = ( P ^ N ) <-> ( # ` B ) = ( P ^ N ) ) ) |
| 14 |
13 8
|
elrab2 |
|- ( B e. S <-> ( B e. ~P X /\ ( # ` B ) = ( P ^ N ) ) ) |
| 15 |
11 14
|
sylib |
|- ( ph -> ( B e. ~P X /\ ( # ` B ) = ( P ^ N ) ) ) |
| 16 |
15
|
simprd |
|- ( ph -> ( # ` B ) = ( P ^ N ) ) |
| 17 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 18 |
4 17
|
syl |
|- ( ph -> P e. NN ) |
| 19 |
18 5
|
nnexpcld |
|- ( ph -> ( P ^ N ) e. NN ) |
| 20 |
16 19
|
eqeltrd |
|- ( ph -> ( # ` B ) e. NN ) |
| 21 |
20
|
nnne0d |
|- ( ph -> ( # ` B ) =/= 0 ) |
| 22 |
|
hasheq0 |
|- ( B e. S -> ( ( # ` B ) = 0 <-> B = (/) ) ) |
| 23 |
22
|
necon3bid |
|- ( B e. S -> ( ( # ` B ) =/= 0 <-> B =/= (/) ) ) |
| 24 |
11 23
|
syl |
|- ( ph -> ( ( # ` B ) =/= 0 <-> B =/= (/) ) ) |
| 25 |
21 24
|
mpbid |
|- ( ph -> B =/= (/) ) |
| 26 |
|
n0 |
|- ( B =/= (/) <-> E. a a e. B ) |
| 27 |
25 26
|
sylib |
|- ( ph -> E. a a e. B ) |
| 28 |
11
|
adantr |
|- ( ( ph /\ a e. B ) -> B e. S ) |
| 29 |
|
simplr |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> a e. B ) |
| 30 |
|
oveq2 |
|- ( z = a -> ( b .+ z ) = ( b .+ a ) ) |
| 31 |
|
eqid |
|- ( z e. B |-> ( b .+ z ) ) = ( z e. B |-> ( b .+ z ) ) |
| 32 |
|
ovex |
|- ( b .+ a ) e. _V |
| 33 |
30 31 32
|
fvmpt |
|- ( a e. B -> ( ( z e. B |-> ( b .+ z ) ) ` a ) = ( b .+ a ) ) |
| 34 |
29 33
|
syl |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( ( z e. B |-> ( b .+ z ) ) ` a ) = ( b .+ a ) ) |
| 35 |
|
ovex |
|- ( b .+ z ) e. _V |
| 36 |
35 31
|
fnmpti |
|- ( z e. B |-> ( b .+ z ) ) Fn B |
| 37 |
|
fnfvelrn |
|- ( ( ( z e. B |-> ( b .+ z ) ) Fn B /\ a e. B ) -> ( ( z e. B |-> ( b .+ z ) ) ` a ) e. ran ( z e. B |-> ( b .+ z ) ) ) |
| 38 |
36 29 37
|
sylancr |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( ( z e. B |-> ( b .+ z ) ) ` a ) e. ran ( z e. B |-> ( b .+ z ) ) ) |
| 39 |
34 38
|
eqeltrrd |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( b .+ a ) e. ran ( z e. B |-> ( b .+ z ) ) ) |
| 40 |
12
|
ssrab3 |
|- H C_ X |
| 41 |
|
simpr |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> b e. H ) |
| 42 |
40 41
|
sselid |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> b e. X ) |
| 43 |
11
|
ad2antrr |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> B e. S ) |
| 44 |
|
mptexg |
|- ( B e. S -> ( z e. B |-> ( b .+ z ) ) e. _V ) |
| 45 |
|
rnexg |
|- ( ( z e. B |-> ( b .+ z ) ) e. _V -> ran ( z e. B |-> ( b .+ z ) ) e. _V ) |
| 46 |
43 44 45
|
3syl |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ran ( z e. B |-> ( b .+ z ) ) e. _V ) |
| 47 |
|
simpr |
|- ( ( x = b /\ y = B ) -> y = B ) |
| 48 |
|
simpl |
|- ( ( x = b /\ y = B ) -> x = b ) |
| 49 |
48
|
oveq1d |
|- ( ( x = b /\ y = B ) -> ( x .+ z ) = ( b .+ z ) ) |
| 50 |
47 49
|
mpteq12dv |
|- ( ( x = b /\ y = B ) -> ( z e. y |-> ( x .+ z ) ) = ( z e. B |-> ( b .+ z ) ) ) |
| 51 |
50
|
rneqd |
|- ( ( x = b /\ y = B ) -> ran ( z e. y |-> ( x .+ z ) ) = ran ( z e. B |-> ( b .+ z ) ) ) |
| 52 |
51 9
|
ovmpoga |
|- ( ( b e. X /\ B e. S /\ ran ( z e. B |-> ( b .+ z ) ) e. _V ) -> ( b .(+) B ) = ran ( z e. B |-> ( b .+ z ) ) ) |
| 53 |
42 43 46 52
|
syl3anc |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( b .(+) B ) = ran ( z e. B |-> ( b .+ z ) ) ) |
| 54 |
39 53
|
eleqtrrd |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( b .+ a ) e. ( b .(+) B ) ) |
| 55 |
|
oveq1 |
|- ( u = b -> ( u .(+) B ) = ( b .(+) B ) ) |
| 56 |
55
|
eqeq1d |
|- ( u = b -> ( ( u .(+) B ) = B <-> ( b .(+) B ) = B ) ) |
| 57 |
56 12
|
elrab2 |
|- ( b e. H <-> ( b e. X /\ ( b .(+) B ) = B ) ) |
| 58 |
57
|
simprbi |
|- ( b e. H -> ( b .(+) B ) = B ) |
| 59 |
58
|
adantl |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( b .(+) B ) = B ) |
| 60 |
54 59
|
eleqtrd |
|- ( ( ( ph /\ a e. B ) /\ b e. H ) -> ( b .+ a ) e. B ) |
| 61 |
60
|
ex |
|- ( ( ph /\ a e. B ) -> ( b e. H -> ( b .+ a ) e. B ) ) |
| 62 |
2
|
ad2antrr |
|- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> G e. Grp ) |
| 63 |
|
simprl |
|- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> b e. H ) |
| 64 |
40 63
|
sselid |
|- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> b e. X ) |
| 65 |
|
simprr |
|- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> c e. H ) |
| 66 |
40 65
|
sselid |
|- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> c e. X ) |
| 67 |
15
|
simpld |
|- ( ph -> B e. ~P X ) |
| 68 |
67
|
elpwid |
|- ( ph -> B C_ X ) |
| 69 |
68
|
sselda |
|- ( ( ph /\ a e. B ) -> a e. X ) |
| 70 |
69
|
adantr |
|- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> a e. X ) |
| 71 |
1 7
|
grprcan |
|- ( ( G e. Grp /\ ( b e. X /\ c e. X /\ a e. X ) ) -> ( ( b .+ a ) = ( c .+ a ) <-> b = c ) ) |
| 72 |
62 64 66 70 71
|
syl13anc |
|- ( ( ( ph /\ a e. B ) /\ ( b e. H /\ c e. H ) ) -> ( ( b .+ a ) = ( c .+ a ) <-> b = c ) ) |
| 73 |
72
|
ex |
|- ( ( ph /\ a e. B ) -> ( ( b e. H /\ c e. H ) -> ( ( b .+ a ) = ( c .+ a ) <-> b = c ) ) ) |
| 74 |
61 73
|
dom2d |
|- ( ( ph /\ a e. B ) -> ( B e. S -> H ~<_ B ) ) |
| 75 |
28 74
|
mpd |
|- ( ( ph /\ a e. B ) -> H ~<_ B ) |
| 76 |
27 75
|
exlimddv |
|- ( ph -> H ~<_ B ) |
| 77 |
|
ssfi |
|- ( ( X e. Fin /\ H C_ X ) -> H e. Fin ) |
| 78 |
3 40 77
|
sylancl |
|- ( ph -> H e. Fin ) |
| 79 |
3 68
|
ssfid |
|- ( ph -> B e. Fin ) |
| 80 |
|
hashdom |
|- ( ( H e. Fin /\ B e. Fin ) -> ( ( # ` H ) <_ ( # ` B ) <-> H ~<_ B ) ) |
| 81 |
78 79 80
|
syl2anc |
|- ( ph -> ( ( # ` H ) <_ ( # ` B ) <-> H ~<_ B ) ) |
| 82 |
76 81
|
mpbird |
|- ( ph -> ( # ` H ) <_ ( # ` B ) ) |
| 83 |
82 16
|
breqtrd |
|- ( ph -> ( # ` H ) <_ ( P ^ N ) ) |