Step |
Hyp |
Ref |
Expression |
1 |
|
sylow1.x |
|- X = ( Base ` G ) |
2 |
|
sylow1.g |
|- ( ph -> G e. Grp ) |
3 |
|
sylow1.f |
|- ( ph -> X e. Fin ) |
4 |
|
sylow1.p |
|- ( ph -> P e. Prime ) |
5 |
|
sylow1.n |
|- ( ph -> N e. NN0 ) |
6 |
|
sylow1.d |
|- ( ph -> ( P ^ N ) || ( # ` X ) ) |
7 |
|
sylow1lem.a |
|- .+ = ( +g ` G ) |
8 |
|
sylow1lem.s |
|- S = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
9 |
|
sylow1lem.m |
|- .(+) = ( x e. X , y e. S |-> ran ( z e. y |-> ( x .+ z ) ) ) |
10 |
|
sylow1lem3.1 |
|- .~ = { <. x , y >. | ( { x , y } C_ S /\ E. g e. X ( g .(+) x ) = y ) } |
11 |
|
sylow1lem4.b |
|- ( ph -> B e. S ) |
12 |
|
sylow1lem4.h |
|- H = { u e. X | ( u .(+) B ) = B } |
13 |
|
sylow1lem5.l |
|- ( ph -> ( P pCnt ( # ` [ B ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) |
14 |
1 2 3 4 5 6 7 8 9
|
sylow1lem2 |
|- ( ph -> .(+) e. ( G GrpAct S ) ) |
15 |
1 12
|
gastacl |
|- ( ( .(+) e. ( G GrpAct S ) /\ B e. S ) -> H e. ( SubGrp ` G ) ) |
16 |
14 11 15
|
syl2anc |
|- ( ph -> H e. ( SubGrp ` G ) ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12
|
sylow1lem4 |
|- ( ph -> ( # ` H ) <_ ( P ^ N ) ) |
18 |
10 1
|
gaorber |
|- ( .(+) e. ( G GrpAct S ) -> .~ Er S ) |
19 |
14 18
|
syl |
|- ( ph -> .~ Er S ) |
20 |
|
erdm |
|- ( .~ Er S -> dom .~ = S ) |
21 |
19 20
|
syl |
|- ( ph -> dom .~ = S ) |
22 |
11 21
|
eleqtrrd |
|- ( ph -> B e. dom .~ ) |
23 |
|
ecdmn0 |
|- ( B e. dom .~ <-> [ B ] .~ =/= (/) ) |
24 |
22 23
|
sylib |
|- ( ph -> [ B ] .~ =/= (/) ) |
25 |
|
pwfi |
|- ( X e. Fin <-> ~P X e. Fin ) |
26 |
3 25
|
sylib |
|- ( ph -> ~P X e. Fin ) |
27 |
8
|
ssrab3 |
|- S C_ ~P X |
28 |
|
ssfi |
|- ( ( ~P X e. Fin /\ S C_ ~P X ) -> S e. Fin ) |
29 |
26 27 28
|
sylancl |
|- ( ph -> S e. Fin ) |
30 |
19
|
ecss |
|- ( ph -> [ B ] .~ C_ S ) |
31 |
29 30
|
ssfid |
|- ( ph -> [ B ] .~ e. Fin ) |
32 |
|
hashnncl |
|- ( [ B ] .~ e. Fin -> ( ( # ` [ B ] .~ ) e. NN <-> [ B ] .~ =/= (/) ) ) |
33 |
31 32
|
syl |
|- ( ph -> ( ( # ` [ B ] .~ ) e. NN <-> [ B ] .~ =/= (/) ) ) |
34 |
24 33
|
mpbird |
|- ( ph -> ( # ` [ B ] .~ ) e. NN ) |
35 |
4 34
|
pccld |
|- ( ph -> ( P pCnt ( # ` [ B ] .~ ) ) e. NN0 ) |
36 |
35
|
nn0red |
|- ( ph -> ( P pCnt ( # ` [ B ] .~ ) ) e. RR ) |
37 |
5
|
nn0red |
|- ( ph -> N e. RR ) |
38 |
1
|
grpbn0 |
|- ( G e. Grp -> X =/= (/) ) |
39 |
2 38
|
syl |
|- ( ph -> X =/= (/) ) |
40 |
|
hashnncl |
|- ( X e. Fin -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
41 |
3 40
|
syl |
|- ( ph -> ( ( # ` X ) e. NN <-> X =/= (/) ) ) |
42 |
39 41
|
mpbird |
|- ( ph -> ( # ` X ) e. NN ) |
43 |
4 42
|
pccld |
|- ( ph -> ( P pCnt ( # ` X ) ) e. NN0 ) |
44 |
43
|
nn0red |
|- ( ph -> ( P pCnt ( # ` X ) ) e. RR ) |
45 |
|
leaddsub |
|- ( ( ( P pCnt ( # ` [ B ] .~ ) ) e. RR /\ N e. RR /\ ( P pCnt ( # ` X ) ) e. RR ) -> ( ( ( P pCnt ( # ` [ B ] .~ ) ) + N ) <_ ( P pCnt ( # ` X ) ) <-> ( P pCnt ( # ` [ B ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
46 |
36 37 44 45
|
syl3anc |
|- ( ph -> ( ( ( P pCnt ( # ` [ B ] .~ ) ) + N ) <_ ( P pCnt ( # ` X ) ) <-> ( P pCnt ( # ` [ B ] .~ ) ) <_ ( ( P pCnt ( # ` X ) ) - N ) ) ) |
47 |
13 46
|
mpbird |
|- ( ph -> ( ( P pCnt ( # ` [ B ] .~ ) ) + N ) <_ ( P pCnt ( # ` X ) ) ) |
48 |
|
eqid |
|- ( G ~QG H ) = ( G ~QG H ) |
49 |
1 12 48 10
|
orbsta2 |
|- ( ( ( .(+) e. ( G GrpAct S ) /\ B e. S ) /\ X e. Fin ) -> ( # ` X ) = ( ( # ` [ B ] .~ ) x. ( # ` H ) ) ) |
50 |
14 11 3 49
|
syl21anc |
|- ( ph -> ( # ` X ) = ( ( # ` [ B ] .~ ) x. ( # ` H ) ) ) |
51 |
50
|
oveq2d |
|- ( ph -> ( P pCnt ( # ` X ) ) = ( P pCnt ( ( # ` [ B ] .~ ) x. ( # ` H ) ) ) ) |
52 |
34
|
nnzd |
|- ( ph -> ( # ` [ B ] .~ ) e. ZZ ) |
53 |
34
|
nnne0d |
|- ( ph -> ( # ` [ B ] .~ ) =/= 0 ) |
54 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
55 |
54
|
subg0cl |
|- ( H e. ( SubGrp ` G ) -> ( 0g ` G ) e. H ) |
56 |
16 55
|
syl |
|- ( ph -> ( 0g ` G ) e. H ) |
57 |
56
|
ne0d |
|- ( ph -> H =/= (/) ) |
58 |
12
|
ssrab3 |
|- H C_ X |
59 |
|
ssfi |
|- ( ( X e. Fin /\ H C_ X ) -> H e. Fin ) |
60 |
3 58 59
|
sylancl |
|- ( ph -> H e. Fin ) |
61 |
|
hashnncl |
|- ( H e. Fin -> ( ( # ` H ) e. NN <-> H =/= (/) ) ) |
62 |
60 61
|
syl |
|- ( ph -> ( ( # ` H ) e. NN <-> H =/= (/) ) ) |
63 |
57 62
|
mpbird |
|- ( ph -> ( # ` H ) e. NN ) |
64 |
63
|
nnzd |
|- ( ph -> ( # ` H ) e. ZZ ) |
65 |
63
|
nnne0d |
|- ( ph -> ( # ` H ) =/= 0 ) |
66 |
|
pcmul |
|- ( ( P e. Prime /\ ( ( # ` [ B ] .~ ) e. ZZ /\ ( # ` [ B ] .~ ) =/= 0 ) /\ ( ( # ` H ) e. ZZ /\ ( # ` H ) =/= 0 ) ) -> ( P pCnt ( ( # ` [ B ] .~ ) x. ( # ` H ) ) ) = ( ( P pCnt ( # ` [ B ] .~ ) ) + ( P pCnt ( # ` H ) ) ) ) |
67 |
4 52 53 64 65 66
|
syl122anc |
|- ( ph -> ( P pCnt ( ( # ` [ B ] .~ ) x. ( # ` H ) ) ) = ( ( P pCnt ( # ` [ B ] .~ ) ) + ( P pCnt ( # ` H ) ) ) ) |
68 |
51 67
|
eqtrd |
|- ( ph -> ( P pCnt ( # ` X ) ) = ( ( P pCnt ( # ` [ B ] .~ ) ) + ( P pCnt ( # ` H ) ) ) ) |
69 |
47 68
|
breqtrd |
|- ( ph -> ( ( P pCnt ( # ` [ B ] .~ ) ) + N ) <_ ( ( P pCnt ( # ` [ B ] .~ ) ) + ( P pCnt ( # ` H ) ) ) ) |
70 |
4 63
|
pccld |
|- ( ph -> ( P pCnt ( # ` H ) ) e. NN0 ) |
71 |
70
|
nn0red |
|- ( ph -> ( P pCnt ( # ` H ) ) e. RR ) |
72 |
37 71 36
|
leadd2d |
|- ( ph -> ( N <_ ( P pCnt ( # ` H ) ) <-> ( ( P pCnt ( # ` [ B ] .~ ) ) + N ) <_ ( ( P pCnt ( # ` [ B ] .~ ) ) + ( P pCnt ( # ` H ) ) ) ) ) |
73 |
69 72
|
mpbird |
|- ( ph -> N <_ ( P pCnt ( # ` H ) ) ) |
74 |
|
pcdvdsb |
|- ( ( P e. Prime /\ ( # ` H ) e. ZZ /\ N e. NN0 ) -> ( N <_ ( P pCnt ( # ` H ) ) <-> ( P ^ N ) || ( # ` H ) ) ) |
75 |
4 64 5 74
|
syl3anc |
|- ( ph -> ( N <_ ( P pCnt ( # ` H ) ) <-> ( P ^ N ) || ( # ` H ) ) ) |
76 |
73 75
|
mpbid |
|- ( ph -> ( P ^ N ) || ( # ` H ) ) |
77 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
78 |
4 77
|
syl |
|- ( ph -> P e. NN ) |
79 |
78 5
|
nnexpcld |
|- ( ph -> ( P ^ N ) e. NN ) |
80 |
79
|
nnzd |
|- ( ph -> ( P ^ N ) e. ZZ ) |
81 |
|
dvdsle |
|- ( ( ( P ^ N ) e. ZZ /\ ( # ` H ) e. NN ) -> ( ( P ^ N ) || ( # ` H ) -> ( P ^ N ) <_ ( # ` H ) ) ) |
82 |
80 63 81
|
syl2anc |
|- ( ph -> ( ( P ^ N ) || ( # ` H ) -> ( P ^ N ) <_ ( # ` H ) ) ) |
83 |
76 82
|
mpd |
|- ( ph -> ( P ^ N ) <_ ( # ` H ) ) |
84 |
|
hashcl |
|- ( H e. Fin -> ( # ` H ) e. NN0 ) |
85 |
60 84
|
syl |
|- ( ph -> ( # ` H ) e. NN0 ) |
86 |
85
|
nn0red |
|- ( ph -> ( # ` H ) e. RR ) |
87 |
79
|
nnred |
|- ( ph -> ( P ^ N ) e. RR ) |
88 |
86 87
|
letri3d |
|- ( ph -> ( ( # ` H ) = ( P ^ N ) <-> ( ( # ` H ) <_ ( P ^ N ) /\ ( P ^ N ) <_ ( # ` H ) ) ) ) |
89 |
17 83 88
|
mpbir2and |
|- ( ph -> ( # ` H ) = ( P ^ N ) ) |
90 |
|
fveqeq2 |
|- ( h = H -> ( ( # ` h ) = ( P ^ N ) <-> ( # ` H ) = ( P ^ N ) ) ) |
91 |
90
|
rspcev |
|- ( ( H e. ( SubGrp ` G ) /\ ( # ` H ) = ( P ^ N ) ) -> E. h e. ( SubGrp ` G ) ( # ` h ) = ( P ^ N ) ) |
92 |
16 89 91
|
syl2anc |
|- ( ph -> E. h e. ( SubGrp ` G ) ( # ` h ) = ( P ^ N ) ) |