Step |
Hyp |
Ref |
Expression |
1 |
|
sylow2.x |
|- X = ( Base ` G ) |
2 |
|
sylow2.f |
|- ( ph -> X e. Fin ) |
3 |
|
sylow2.h |
|- ( ph -> H e. ( P pSyl G ) ) |
4 |
|
sylow2.k |
|- ( ph -> K e. ( P pSyl G ) ) |
5 |
|
sylow2.a |
|- .+ = ( +g ` G ) |
6 |
|
sylow2.d |
|- .- = ( -g ` G ) |
7 |
2
|
adantr |
|- ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> X e. Fin ) |
8 |
|
slwsubg |
|- ( K e. ( P pSyl G ) -> K e. ( SubGrp ` G ) ) |
9 |
4 8
|
syl |
|- ( ph -> K e. ( SubGrp ` G ) ) |
10 |
|
simprl |
|- ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> g e. X ) |
11 |
|
eqid |
|- ( x e. K |-> ( ( g .+ x ) .- g ) ) = ( x e. K |-> ( ( g .+ x ) .- g ) ) |
12 |
1 5 6 11
|
conjsubg |
|- ( ( K e. ( SubGrp ` G ) /\ g e. X ) -> ran ( x e. K |-> ( ( g .+ x ) .- g ) ) e. ( SubGrp ` G ) ) |
13 |
9 10 12
|
syl2an2r |
|- ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> ran ( x e. K |-> ( ( g .+ x ) .- g ) ) e. ( SubGrp ` G ) ) |
14 |
1
|
subgss |
|- ( ran ( x e. K |-> ( ( g .+ x ) .- g ) ) e. ( SubGrp ` G ) -> ran ( x e. K |-> ( ( g .+ x ) .- g ) ) C_ X ) |
15 |
13 14
|
syl |
|- ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> ran ( x e. K |-> ( ( g .+ x ) .- g ) ) C_ X ) |
16 |
7 15
|
ssfid |
|- ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> ran ( x e. K |-> ( ( g .+ x ) .- g ) ) e. Fin ) |
17 |
|
simprr |
|- ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
18 |
1 2 3
|
slwhash |
|- ( ph -> ( # ` H ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
19 |
1 2 4
|
slwhash |
|- ( ph -> ( # ` K ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
20 |
18 19
|
eqtr4d |
|- ( ph -> ( # ` H ) = ( # ` K ) ) |
21 |
|
slwsubg |
|- ( H e. ( P pSyl G ) -> H e. ( SubGrp ` G ) ) |
22 |
3 21
|
syl |
|- ( ph -> H e. ( SubGrp ` G ) ) |
23 |
1
|
subgss |
|- ( H e. ( SubGrp ` G ) -> H C_ X ) |
24 |
22 23
|
syl |
|- ( ph -> H C_ X ) |
25 |
2 24
|
ssfid |
|- ( ph -> H e. Fin ) |
26 |
1
|
subgss |
|- ( K e. ( SubGrp ` G ) -> K C_ X ) |
27 |
9 26
|
syl |
|- ( ph -> K C_ X ) |
28 |
2 27
|
ssfid |
|- ( ph -> K e. Fin ) |
29 |
|
hashen |
|- ( ( H e. Fin /\ K e. Fin ) -> ( ( # ` H ) = ( # ` K ) <-> H ~~ K ) ) |
30 |
25 28 29
|
syl2anc |
|- ( ph -> ( ( # ` H ) = ( # ` K ) <-> H ~~ K ) ) |
31 |
20 30
|
mpbid |
|- ( ph -> H ~~ K ) |
32 |
1 5 6 11
|
conjsubgen |
|- ( ( K e. ( SubGrp ` G ) /\ g e. X ) -> K ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
33 |
9 10 32
|
syl2an2r |
|- ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> K ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
34 |
|
entr |
|- ( ( H ~~ K /\ K ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) -> H ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
35 |
31 33 34
|
syl2an2r |
|- ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> H ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
36 |
|
fisseneq |
|- ( ( ran ( x e. K |-> ( ( g .+ x ) .- g ) ) e. Fin /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) /\ H ~~ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) -> H = ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
37 |
16 17 35 36
|
syl3anc |
|- ( ( ph /\ ( g e. X /\ H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) ) -> H = ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
38 |
|
eqid |
|- ( G |`s H ) = ( G |`s H ) |
39 |
38
|
slwpgp |
|- ( H e. ( P pSyl G ) -> P pGrp ( G |`s H ) ) |
40 |
3 39
|
syl |
|- ( ph -> P pGrp ( G |`s H ) ) |
41 |
1 2 22 9 5 40 19 6
|
sylow2b |
|- ( ph -> E. g e. X H C_ ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |
42 |
37 41
|
reximddv |
|- ( ph -> E. g e. X H = ran ( x e. K |-> ( ( g .+ x ) .- g ) ) ) |