| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sylow2a.x |
|- X = ( Base ` G ) |
| 2 |
|
sylow2a.m |
|- ( ph -> .(+) e. ( G GrpAct Y ) ) |
| 3 |
|
sylow2a.p |
|- ( ph -> P pGrp G ) |
| 4 |
|
sylow2a.f |
|- ( ph -> X e. Fin ) |
| 5 |
|
sylow2a.y |
|- ( ph -> Y e. Fin ) |
| 6 |
|
sylow2a.z |
|- Z = { u e. Y | A. h e. X ( h .(+) u ) = u } |
| 7 |
|
sylow2a.r |
|- .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) } |
| 8 |
|
vex |
|- w e. _V |
| 9 |
|
simpr |
|- ( ( ph /\ A e. Z ) -> A e. Z ) |
| 10 |
|
elecg |
|- ( ( w e. _V /\ A e. Z ) -> ( w e. [ A ] .~ <-> A .~ w ) ) |
| 11 |
8 9 10
|
sylancr |
|- ( ( ph /\ A e. Z ) -> ( w e. [ A ] .~ <-> A .~ w ) ) |
| 12 |
7
|
gaorb |
|- ( A .~ w <-> ( A e. Y /\ w e. Y /\ E. k e. X ( k .(+) A ) = w ) ) |
| 13 |
12
|
simp3bi |
|- ( A .~ w -> E. k e. X ( k .(+) A ) = w ) |
| 14 |
|
oveq2 |
|- ( u = A -> ( h .(+) u ) = ( h .(+) A ) ) |
| 15 |
|
id |
|- ( u = A -> u = A ) |
| 16 |
14 15
|
eqeq12d |
|- ( u = A -> ( ( h .(+) u ) = u <-> ( h .(+) A ) = A ) ) |
| 17 |
16
|
ralbidv |
|- ( u = A -> ( A. h e. X ( h .(+) u ) = u <-> A. h e. X ( h .(+) A ) = A ) ) |
| 18 |
17 6
|
elrab2 |
|- ( A e. Z <-> ( A e. Y /\ A. h e. X ( h .(+) A ) = A ) ) |
| 19 |
9 18
|
sylib |
|- ( ( ph /\ A e. Z ) -> ( A e. Y /\ A. h e. X ( h .(+) A ) = A ) ) |
| 20 |
19
|
simprd |
|- ( ( ph /\ A e. Z ) -> A. h e. X ( h .(+) A ) = A ) |
| 21 |
|
oveq1 |
|- ( h = k -> ( h .(+) A ) = ( k .(+) A ) ) |
| 22 |
21
|
eqeq1d |
|- ( h = k -> ( ( h .(+) A ) = A <-> ( k .(+) A ) = A ) ) |
| 23 |
22
|
rspccva |
|- ( ( A. h e. X ( h .(+) A ) = A /\ k e. X ) -> ( k .(+) A ) = A ) |
| 24 |
20 23
|
sylan |
|- ( ( ( ph /\ A e. Z ) /\ k e. X ) -> ( k .(+) A ) = A ) |
| 25 |
|
eqeq1 |
|- ( ( k .(+) A ) = w -> ( ( k .(+) A ) = A <-> w = A ) ) |
| 26 |
24 25
|
syl5ibcom |
|- ( ( ( ph /\ A e. Z ) /\ k e. X ) -> ( ( k .(+) A ) = w -> w = A ) ) |
| 27 |
26
|
rexlimdva |
|- ( ( ph /\ A e. Z ) -> ( E. k e. X ( k .(+) A ) = w -> w = A ) ) |
| 28 |
13 27
|
syl5 |
|- ( ( ph /\ A e. Z ) -> ( A .~ w -> w = A ) ) |
| 29 |
11 28
|
sylbid |
|- ( ( ph /\ A e. Z ) -> ( w e. [ A ] .~ -> w = A ) ) |
| 30 |
|
velsn |
|- ( w e. { A } <-> w = A ) |
| 31 |
29 30
|
imbitrrdi |
|- ( ( ph /\ A e. Z ) -> ( w e. [ A ] .~ -> w e. { A } ) ) |
| 32 |
31
|
ssrdv |
|- ( ( ph /\ A e. Z ) -> [ A ] .~ C_ { A } ) |
| 33 |
7 1
|
gaorber |
|- ( .(+) e. ( G GrpAct Y ) -> .~ Er Y ) |
| 34 |
2 33
|
syl |
|- ( ph -> .~ Er Y ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ A e. Z ) -> .~ Er Y ) |
| 36 |
19
|
simpld |
|- ( ( ph /\ A e. Z ) -> A e. Y ) |
| 37 |
35 36
|
erref |
|- ( ( ph /\ A e. Z ) -> A .~ A ) |
| 38 |
|
elecg |
|- ( ( A e. Z /\ A e. Z ) -> ( A e. [ A ] .~ <-> A .~ A ) ) |
| 39 |
9 38
|
sylancom |
|- ( ( ph /\ A e. Z ) -> ( A e. [ A ] .~ <-> A .~ A ) ) |
| 40 |
37 39
|
mpbird |
|- ( ( ph /\ A e. Z ) -> A e. [ A ] .~ ) |
| 41 |
40
|
snssd |
|- ( ( ph /\ A e. Z ) -> { A } C_ [ A ] .~ ) |
| 42 |
32 41
|
eqssd |
|- ( ( ph /\ A e. Z ) -> [ A ] .~ = { A } ) |