| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sylow2b.x | 
							 |-  X = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							sylow2b.xf | 
							 |-  ( ph -> X e. Fin )  | 
						
						
							| 3 | 
							
								
							 | 
							sylow2b.h | 
							 |-  ( ph -> H e. ( SubGrp ` G ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sylow2b.k | 
							 |-  ( ph -> K e. ( SubGrp ` G ) )  | 
						
						
							| 5 | 
							
								
							 | 
							sylow2b.a | 
							 |-  .+ = ( +g ` G )  | 
						
						
							| 6 | 
							
								
							 | 
							sylow2b.r | 
							 |-  .~ = ( G ~QG K )  | 
						
						
							| 7 | 
							
								
							 | 
							sylow2b.m | 
							 |-  .x. = ( x e. H , y e. ( X /. .~ ) |-> ran ( z e. y |-> ( x .+ z ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> B e. H )  | 
						
						
							| 9 | 
							
								6
							 | 
							ovexi | 
							 |-  .~ e. _V  | 
						
						
							| 10 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> C e. X )  | 
						
						
							| 11 | 
							
								
							 | 
							ecelqsg | 
							 |-  ( ( .~ e. _V /\ C e. X ) -> [ C ] .~ e. ( X /. .~ ) )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							sylancr | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ e. ( X /. .~ ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simpr | 
							 |-  ( ( x = B /\ y = [ C ] .~ ) -> y = [ C ] .~ )  | 
						
						
							| 14 | 
							
								
							 | 
							simpl | 
							 |-  ( ( x = B /\ y = [ C ] .~ ) -> x = B )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq1d | 
							 |-  ( ( x = B /\ y = [ C ] .~ ) -> ( x .+ z ) = ( B .+ z ) )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							mpteq12dv | 
							 |-  ( ( x = B /\ y = [ C ] .~ ) -> ( z e. y |-> ( x .+ z ) ) = ( z e. [ C ] .~ |-> ( B .+ z ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rneqd | 
							 |-  ( ( x = B /\ y = [ C ] .~ ) -> ran ( z e. y |-> ( x .+ z ) ) = ran ( z e. [ C ] .~ |-> ( B .+ z ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							ecexg | 
							 |-  ( .~ e. _V -> [ C ] .~ e. _V )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							ax-mp | 
							 |-  [ C ] .~ e. _V  | 
						
						
							| 20 | 
							
								19
							 | 
							mptex | 
							 |-  ( z e. [ C ] .~ |-> ( B .+ z ) ) e. _V  | 
						
						
							| 21 | 
							
								20
							 | 
							rnex | 
							 |-  ran ( z e. [ C ] .~ |-> ( B .+ z ) ) e. _V  | 
						
						
							| 22 | 
							
								17 7 21
							 | 
							ovmpoa | 
							 |-  ( ( B e. H /\ [ C ] .~ e. ( X /. .~ ) ) -> ( B .x. [ C ] .~ ) = ran ( z e. [ C ] .~ |-> ( B .+ z ) ) )  | 
						
						
							| 23 | 
							
								8 12 22
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( B .x. [ C ] .~ ) = ran ( z e. [ C ] .~ |-> ( B .+ z ) ) )  | 
						
						
							| 24 | 
							
								1 6
							 | 
							eqger | 
							 |-  ( K e. ( SubGrp ` G ) -> .~ Er X )  | 
						
						
							| 25 | 
							
								4 24
							 | 
							syl | 
							 |-  ( ph -> .~ Er X )  | 
						
						
							| 26 | 
							
								25
							 | 
							ecss | 
							 |-  ( ph -> [ ( B .+ C ) ] .~ C_ X )  | 
						
						
							| 27 | 
							
								2 26
							 | 
							ssfid | 
							 |-  ( ph -> [ ( B .+ C ) ] .~ e. Fin )  | 
						
						
							| 28 | 
							
								27
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> [ ( B .+ C ) ] .~ e. Fin )  | 
						
						
							| 29 | 
							
								
							 | 
							vex | 
							 |-  z e. _V  | 
						
						
							| 30 | 
							
								
							 | 
							elecg | 
							 |-  ( ( z e. _V /\ C e. X ) -> ( z e. [ C ] .~ <-> C .~ z ) )  | 
						
						
							| 31 | 
							
								29 10 30
							 | 
							sylancr | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ <-> C .~ z ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							biimpa | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ z e. [ C ] .~ ) -> C .~ z )  | 
						
						
							| 33 | 
							
								
							 | 
							subgrcl | 
							 |-  ( H e. ( SubGrp ` G ) -> G e. Grp )  | 
						
						
							| 34 | 
							
								3 33
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 35 | 
							
								34
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> G e. Grp )  | 
						
						
							| 36 | 
							
								1
							 | 
							subgss | 
							 |-  ( H e. ( SubGrp ` G ) -> H C_ X )  | 
						
						
							| 37 | 
							
								3 36
							 | 
							syl | 
							 |-  ( ph -> H C_ X )  | 
						
						
							| 38 | 
							
								37
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> H C_ X )  | 
						
						
							| 39 | 
							
								38 8
							 | 
							sseldd | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> B e. X )  | 
						
						
							| 40 | 
							
								1 5
							 | 
							grpcl | 
							 |-  ( ( G e. Grp /\ B e. X /\ C e. X ) -> ( B .+ C ) e. X )  | 
						
						
							| 41 | 
							
								35 39 10 40
							 | 
							syl3anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( B .+ C ) e. X )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantr | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ C ) e. X )  | 
						
						
							| 43 | 
							
								35
							 | 
							adantr | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> G e. Grp )  | 
						
						
							| 44 | 
							
								39
							 | 
							adantr | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> B e. X )  | 
						
						
							| 45 | 
							
								1
							 | 
							subgss | 
							 |-  ( K e. ( SubGrp ` G ) -> K C_ X )  | 
						
						
							| 46 | 
							
								4 45
							 | 
							syl | 
							 |-  ( ph -> K C_ X )  | 
						
						
							| 47 | 
							
								
							 | 
							eqid | 
							 |-  ( invg ` G ) = ( invg ` G )  | 
						
						
							| 48 | 
							
								1 47 5 6
							 | 
							eqgval | 
							 |-  ( ( G e. Grp /\ K C_ X ) -> ( C .~ z <-> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) )  | 
						
						
							| 49 | 
							
								34 46 48
							 | 
							syl2anc | 
							 |-  ( ph -> ( C .~ z <-> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( C .~ z <-> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							biimpa | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( C e. X /\ z e. X /\ ( ( ( invg ` G ) ` C ) .+ z ) e. K ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							simp2d | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> z e. X )  | 
						
						
							| 53 | 
							
								1 5
							 | 
							grpcl | 
							 |-  ( ( G e. Grp /\ B e. X /\ z e. X ) -> ( B .+ z ) e. X )  | 
						
						
							| 54 | 
							
								43 44 52 53
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ z ) e. X )  | 
						
						
							| 55 | 
							
								1 47
							 | 
							grpinvcl | 
							 |-  ( ( G e. Grp /\ ( B .+ C ) e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) e. X )  | 
						
						
							| 56 | 
							
								35 41 55
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) e. X )  | 
						
						
							| 57 | 
							
								56
							 | 
							adantr | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( invg ` G ) ` ( B .+ C ) ) e. X )  | 
						
						
							| 58 | 
							
								1 5
							 | 
							grpass | 
							 |-  ( ( G e. Grp /\ ( ( ( invg ` G ) ` ( B .+ C ) ) e. X /\ B e. X /\ z e. X ) ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) )  | 
						
						
							| 59 | 
							
								43 57 44 52 58
							 | 
							syl13anc | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) )  | 
						
						
							| 60 | 
							
								1 5 47
							 | 
							grpinvadd | 
							 |-  ( ( G e. Grp /\ B e. X /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) )  | 
						
						
							| 61 | 
							
								35 39 10 60
							 | 
							syl3anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) )  | 
						
						
							| 62 | 
							
								1 47
							 | 
							grpinvcl | 
							 |-  ( ( G e. Grp /\ C e. X ) -> ( ( invg ` G ) ` C ) e. X )  | 
						
						
							| 63 | 
							
								35 10 62
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` C ) e. X )  | 
						
						
							| 64 | 
							
								
							 | 
							eqid | 
							 |-  ( -g ` G ) = ( -g ` G )  | 
						
						
							| 65 | 
							
								1 5 47 64
							 | 
							grpsubval | 
							 |-  ( ( ( ( invg ` G ) ` C ) e. X /\ B e. X ) -> ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) )  | 
						
						
							| 66 | 
							
								63 39 65
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) = ( ( ( invg ` G ) ` C ) .+ ( ( invg ` G ) ` B ) ) )  | 
						
						
							| 67 | 
							
								61 66
							 | 
							eqtr4d | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( invg ` G ) ` ( B .+ C ) ) = ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							oveq1d | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) = ( ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) .+ B ) )  | 
						
						
							| 69 | 
							
								1 5 64
							 | 
							grpnpcan | 
							 |-  ( ( G e. Grp /\ ( ( invg ` G ) ` C ) e. X /\ B e. X ) -> ( ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) .+ B ) = ( ( invg ` G ) ` C ) )  | 
						
						
							| 70 | 
							
								35 63 39 69
							 | 
							syl3anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( ( invg ` G ) ` C ) ( -g ` G ) B ) .+ B ) = ( ( invg ` G ) ` C ) )  | 
						
						
							| 71 | 
							
								68 70
							 | 
							eqtrd | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) = ( ( invg ` G ) ` C ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							oveq1d | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` C ) .+ z ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantr | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( ( invg ` G ) ` ( B .+ C ) ) .+ B ) .+ z ) = ( ( ( invg ` G ) ` C ) .+ z ) )  | 
						
						
							| 74 | 
							
								59 73
							 | 
							eqtr3d | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) = ( ( ( invg ` G ) ` C ) .+ z ) )  | 
						
						
							| 75 | 
							
								51
							 | 
							simp3d | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( invg ` G ) ` C ) .+ z ) e. K )  | 
						
						
							| 76 | 
							
								74 75
							 | 
							eqeltrd | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K )  | 
						
						
							| 77 | 
							
								1 47 5 6
							 | 
							eqgval | 
							 |-  ( ( G e. Grp /\ K C_ X ) -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) )  | 
						
						
							| 78 | 
							
								34 46 77
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							adantr | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( ( B .+ C ) .~ ( B .+ z ) <-> ( ( B .+ C ) e. X /\ ( B .+ z ) e. X /\ ( ( ( invg ` G ) ` ( B .+ C ) ) .+ ( B .+ z ) ) e. K ) ) )  | 
						
						
							| 81 | 
							
								42 54 76 80
							 | 
							mpbir3and | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ C ) .~ ( B .+ z ) )  | 
						
						
							| 82 | 
							
								
							 | 
							ovex | 
							 |-  ( B .+ z ) e. _V  | 
						
						
							| 83 | 
							
								
							 | 
							ovex | 
							 |-  ( B .+ C ) e. _V  | 
						
						
							| 84 | 
							
								82 83
							 | 
							elec | 
							 |-  ( ( B .+ z ) e. [ ( B .+ C ) ] .~ <-> ( B .+ C ) .~ ( B .+ z ) )  | 
						
						
							| 85 | 
							
								81 84
							 | 
							sylibr | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ C .~ z ) -> ( B .+ z ) e. [ ( B .+ C ) ] .~ )  | 
						
						
							| 86 | 
							
								32 85
							 | 
							syldan | 
							 |-  ( ( ( ph /\ B e. H /\ C e. X ) /\ z e. [ C ] .~ ) -> ( B .+ z ) e. [ ( B .+ C ) ] .~ )  | 
						
						
							| 87 | 
							
								86
							 | 
							fmpttd | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ --> [ ( B .+ C ) ] .~ )  | 
						
						
							| 88 | 
							
								87
							 | 
							frnd | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) C_ [ ( B .+ C ) ] .~ )  | 
						
						
							| 89 | 
							
								
							 | 
							eqid | 
							 |-  ( z e. X |-> ( B .+ z ) ) = ( z e. X |-> ( B .+ z ) )  | 
						
						
							| 90 | 
							
								1 5 89
							 | 
							grplmulf1o | 
							 |-  ( ( G e. Grp /\ B e. X ) -> ( z e. X |-> ( B .+ z ) ) : X -1-1-onto-> X )  | 
						
						
							| 91 | 
							
								35 39 90
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. X |-> ( B .+ z ) ) : X -1-1-onto-> X )  | 
						
						
							| 92 | 
							
								
							 | 
							f1of1 | 
							 |-  ( ( z e. X |-> ( B .+ z ) ) : X -1-1-onto-> X -> ( z e. X |-> ( B .+ z ) ) : X -1-1-> X )  | 
						
						
							| 93 | 
							
								91 92
							 | 
							syl | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. X |-> ( B .+ z ) ) : X -1-1-> X )  | 
						
						
							| 94 | 
							
								25
							 | 
							ecss | 
							 |-  ( ph -> [ C ] .~ C_ X )  | 
						
						
							| 95 | 
							
								94
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ C_ X )  | 
						
						
							| 96 | 
							
								
							 | 
							f1ssres | 
							 |-  ( ( ( z e. X |-> ( B .+ z ) ) : X -1-1-> X /\ [ C ] .~ C_ X ) -> ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X )  | 
						
						
							| 97 | 
							
								93 95 96
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X )  | 
						
						
							| 98 | 
							
								
							 | 
							resmpt | 
							 |-  ( [ C ] .~ C_ X -> ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) = ( z e. [ C ] .~ |-> ( B .+ z ) ) )  | 
						
						
							| 99 | 
							
								
							 | 
							f1eq1 | 
							 |-  ( ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) = ( z e. [ C ] .~ |-> ( B .+ z ) ) -> ( ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X <-> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X ) )  | 
						
						
							| 100 | 
							
								95 98 99
							 | 
							3syl | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( ( ( z e. X |-> ( B .+ z ) ) |` [ C ] .~ ) : [ C ] .~ -1-1-> X <-> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X ) )  | 
						
						
							| 101 | 
							
								97 100
							 | 
							mpbid | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X )  | 
						
						
							| 102 | 
							
								
							 | 
							f1f1orn | 
							 |-  ( ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-> X -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-onto-> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) )  | 
						
						
							| 103 | 
							
								101 102
							 | 
							syl | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-onto-> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) )  | 
						
						
							| 104 | 
							
								19
							 | 
							f1oen | 
							 |-  ( ( z e. [ C ] .~ |-> ( B .+ z ) ) : [ C ] .~ -1-1-onto-> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) -> [ C ] .~ ~~ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) )  | 
						
						
							| 105 | 
							
								
							 | 
							ensym | 
							 |-  ( [ C ] .~ ~~ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ C ] .~ )  | 
						
						
							| 106 | 
							
								103 104 105
							 | 
							3syl | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ C ] .~ )  | 
						
						
							| 107 | 
							
								4
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> K e. ( SubGrp ` G ) )  | 
						
						
							| 108 | 
							
								1 6
							 | 
							eqgen | 
							 |-  ( ( K e. ( SubGrp ` G ) /\ [ C ] .~ e. ( X /. .~ ) ) -> K ~~ [ C ] .~ )  | 
						
						
							| 109 | 
							
								107 12 108
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> K ~~ [ C ] .~ )  | 
						
						
							| 110 | 
							
								
							 | 
							ensym | 
							 |-  ( K ~~ [ C ] .~ -> [ C ] .~ ~~ K )  | 
						
						
							| 111 | 
							
								109 110
							 | 
							syl | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ ~~ K )  | 
						
						
							| 112 | 
							
								
							 | 
							ecelqsg | 
							 |-  ( ( .~ e. _V /\ ( B .+ C ) e. X ) -> [ ( B .+ C ) ] .~ e. ( X /. .~ ) )  | 
						
						
							| 113 | 
							
								9 41 112
							 | 
							sylancr | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> [ ( B .+ C ) ] .~ e. ( X /. .~ ) )  | 
						
						
							| 114 | 
							
								1 6
							 | 
							eqgen | 
							 |-  ( ( K e. ( SubGrp ` G ) /\ [ ( B .+ C ) ] .~ e. ( X /. .~ ) ) -> K ~~ [ ( B .+ C ) ] .~ )  | 
						
						
							| 115 | 
							
								107 113 114
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> K ~~ [ ( B .+ C ) ] .~ )  | 
						
						
							| 116 | 
							
								
							 | 
							entr | 
							 |-  ( ( [ C ] .~ ~~ K /\ K ~~ [ ( B .+ C ) ] .~ ) -> [ C ] .~ ~~ [ ( B .+ C ) ] .~ )  | 
						
						
							| 117 | 
							
								111 115 116
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> [ C ] .~ ~~ [ ( B .+ C ) ] .~ )  | 
						
						
							| 118 | 
							
								
							 | 
							entr | 
							 |-  ( ( ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ C ] .~ /\ [ C ] .~ ~~ [ ( B .+ C ) ] .~ ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ ( B .+ C ) ] .~ )  | 
						
						
							| 119 | 
							
								106 117 118
							 | 
							syl2anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ ( B .+ C ) ] .~ )  | 
						
						
							| 120 | 
							
								
							 | 
							fisseneq | 
							 |-  ( ( [ ( B .+ C ) ] .~ e. Fin /\ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) C_ [ ( B .+ C ) ] .~ /\ ran ( z e. [ C ] .~ |-> ( B .+ z ) ) ~~ [ ( B .+ C ) ] .~ ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) = [ ( B .+ C ) ] .~ )  | 
						
						
							| 121 | 
							
								28 88 119 120
							 | 
							syl3anc | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ran ( z e. [ C ] .~ |-> ( B .+ z ) ) = [ ( B .+ C ) ] .~ )  | 
						
						
							| 122 | 
							
								23 121
							 | 
							eqtrd | 
							 |-  ( ( ph /\ B e. H /\ C e. X ) -> ( B .x. [ C ] .~ ) = [ ( B .+ C ) ] .~ )  |