| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sylow2b.x | 
							 |-  X = ( Base ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							sylow2b.xf | 
							 |-  ( ph -> X e. Fin )  | 
						
						
							| 3 | 
							
								
							 | 
							sylow2b.h | 
							 |-  ( ph -> H e. ( SubGrp ` G ) )  | 
						
						
							| 4 | 
							
								
							 | 
							sylow2b.k | 
							 |-  ( ph -> K e. ( SubGrp ` G ) )  | 
						
						
							| 5 | 
							
								
							 | 
							sylow2b.a | 
							 |-  .+ = ( +g ` G )  | 
						
						
							| 6 | 
							
								
							 | 
							sylow2b.r | 
							 |-  .~ = ( G ~QG K )  | 
						
						
							| 7 | 
							
								
							 | 
							sylow2b.m | 
							 |-  .x. = ( x e. H , y e. ( X /. .~ ) |-> ran ( z e. y |-> ( x .+ z ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( G |`s H ) = ( G |`s H )  | 
						
						
							| 9 | 
							
								8
							 | 
							subggrp | 
							 |-  ( H e. ( SubGrp ` G ) -> ( G |`s H ) e. Grp )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							syl | 
							 |-  ( ph -> ( G |`s H ) e. Grp )  | 
						
						
							| 11 | 
							
								
							 | 
							pwfi | 
							 |-  ( X e. Fin <-> ~P X e. Fin )  | 
						
						
							| 12 | 
							
								2 11
							 | 
							sylib | 
							 |-  ( ph -> ~P X e. Fin )  | 
						
						
							| 13 | 
							
								1 6
							 | 
							eqger | 
							 |-  ( K e. ( SubGrp ` G ) -> .~ Er X )  | 
						
						
							| 14 | 
							
								4 13
							 | 
							syl | 
							 |-  ( ph -> .~ Er X )  | 
						
						
							| 15 | 
							
								14
							 | 
							qsss | 
							 |-  ( ph -> ( X /. .~ ) C_ ~P X )  | 
						
						
							| 16 | 
							
								12 15
							 | 
							ssexd | 
							 |-  ( ph -> ( X /. .~ ) e. _V )  | 
						
						
							| 17 | 
							
								10 16
							 | 
							jca | 
							 |-  ( ph -> ( ( G |`s H ) e. Grp /\ ( X /. .~ ) e. _V ) )  | 
						
						
							| 18 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 19 | 
							
								18
							 | 
							mptex | 
							 |-  ( z e. y |-> ( x .+ z ) ) e. _V  | 
						
						
							| 20 | 
							
								19
							 | 
							rnex | 
							 |-  ran ( z e. y |-> ( x .+ z ) ) e. _V  | 
						
						
							| 21 | 
							
								7 20
							 | 
							fnmpoi | 
							 |-  .x. Fn ( H X. ( X /. .~ ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							 |-  ( ph -> .x. Fn ( H X. ( X /. .~ ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							 |-  ( X /. .~ ) = ( X /. .~ )  | 
						
						
							| 24 | 
							
								
							 | 
							oveq2 | 
							 |-  ( [ s ] .~ = v -> ( u .x. [ s ] .~ ) = ( u .x. v ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eleq1d | 
							 |-  ( [ s ] .~ = v -> ( ( u .x. [ s ] .~ ) e. ( X /. .~ ) <-> ( u .x. v ) e. ( X /. .~ ) ) )  | 
						
						
							| 26 | 
							
								1 2 3 4 5 6 7
							 | 
							sylow2blem1 | 
							 |-  ( ( ph /\ u e. H /\ s e. X ) -> ( u .x. [ s ] .~ ) = [ ( u .+ s ) ] .~ )  | 
						
						
							| 27 | 
							
								6
							 | 
							ovexi | 
							 |-  .~ e. _V  | 
						
						
							| 28 | 
							
								
							 | 
							subgrcl | 
							 |-  ( H e. ( SubGrp ` G ) -> G e. Grp )  | 
						
						
							| 29 | 
							
								3 28
							 | 
							syl | 
							 |-  ( ph -> G e. Grp )  | 
						
						
							| 30 | 
							
								29
							 | 
							3ad2ant1 | 
							 |-  ( ( ph /\ u e. H /\ s e. X ) -> G e. Grp )  | 
						
						
							| 31 | 
							
								1
							 | 
							subgss | 
							 |-  ( H e. ( SubGrp ` G ) -> H C_ X )  | 
						
						
							| 32 | 
							
								3 31
							 | 
							syl | 
							 |-  ( ph -> H C_ X )  | 
						
						
							| 33 | 
							
								32
							 | 
							sselda | 
							 |-  ( ( ph /\ u e. H ) -> u e. X )  | 
						
						
							| 34 | 
							
								33
							 | 
							3adant3 | 
							 |-  ( ( ph /\ u e. H /\ s e. X ) -> u e. X )  | 
						
						
							| 35 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ph /\ u e. H /\ s e. X ) -> s e. X )  | 
						
						
							| 36 | 
							
								1 5
							 | 
							grpcl | 
							 |-  ( ( G e. Grp /\ u e. X /\ s e. X ) -> ( u .+ s ) e. X )  | 
						
						
							| 37 | 
							
								30 34 35 36
							 | 
							syl3anc | 
							 |-  ( ( ph /\ u e. H /\ s e. X ) -> ( u .+ s ) e. X )  | 
						
						
							| 38 | 
							
								
							 | 
							ecelqsg | 
							 |-  ( ( .~ e. _V /\ ( u .+ s ) e. X ) -> [ ( u .+ s ) ] .~ e. ( X /. .~ ) )  | 
						
						
							| 39 | 
							
								27 37 38
							 | 
							sylancr | 
							 |-  ( ( ph /\ u e. H /\ s e. X ) -> [ ( u .+ s ) ] .~ e. ( X /. .~ ) )  | 
						
						
							| 40 | 
							
								26 39
							 | 
							eqeltrd | 
							 |-  ( ( ph /\ u e. H /\ s e. X ) -> ( u .x. [ s ] .~ ) e. ( X /. .~ ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							3expa | 
							 |-  ( ( ( ph /\ u e. H ) /\ s e. X ) -> ( u .x. [ s ] .~ ) e. ( X /. .~ ) )  | 
						
						
							| 42 | 
							
								23 25 41
							 | 
							ectocld | 
							 |-  ( ( ( ph /\ u e. H ) /\ v e. ( X /. .~ ) ) -> ( u .x. v ) e. ( X /. .~ ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							ralrimiva | 
							 |-  ( ( ph /\ u e. H ) -> A. v e. ( X /. .~ ) ( u .x. v ) e. ( X /. .~ ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ralrimiva | 
							 |-  ( ph -> A. u e. H A. v e. ( X /. .~ ) ( u .x. v ) e. ( X /. .~ ) )  | 
						
						
							| 45 | 
							
								
							 | 
							ffnov | 
							 |-  ( .x. : ( H X. ( X /. .~ ) ) --> ( X /. .~ ) <-> ( .x. Fn ( H X. ( X /. .~ ) ) /\ A. u e. H A. v e. ( X /. .~ ) ( u .x. v ) e. ( X /. .~ ) ) )  | 
						
						
							| 46 | 
							
								22 44 45
							 | 
							sylanbrc | 
							 |-  ( ph -> .x. : ( H X. ( X /. .~ ) ) --> ( X /. .~ ) )  | 
						
						
							| 47 | 
							
								8
							 | 
							subgbas | 
							 |-  ( H e. ( SubGrp ` G ) -> H = ( Base ` ( G |`s H ) ) )  | 
						
						
							| 48 | 
							
								3 47
							 | 
							syl | 
							 |-  ( ph -> H = ( Base ` ( G |`s H ) ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							xpeq1d | 
							 |-  ( ph -> ( H X. ( X /. .~ ) ) = ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							feq2d | 
							 |-  ( ph -> ( .x. : ( H X. ( X /. .~ ) ) --> ( X /. .~ ) <-> .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) ) )  | 
						
						
							| 51 | 
							
								46 50
							 | 
							mpbid | 
							 |-  ( ph -> .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) )  | 
						
						
							| 52 | 
							
								
							 | 
							oveq2 | 
							 |-  ( [ s ] .~ = u -> ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = ( ( 0g ` ( G |`s H ) ) .x. u ) )  | 
						
						
							| 53 | 
							
								
							 | 
							id | 
							 |-  ( [ s ] .~ = u -> [ s ] .~ = u )  | 
						
						
							| 54 | 
							
								52 53
							 | 
							eqeq12d | 
							 |-  ( [ s ] .~ = u -> ( ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ <-> ( ( 0g ` ( G |`s H ) ) .x. u ) = u ) )  | 
						
						
							| 55 | 
							
								
							 | 
							oveq2 | 
							 |-  ( [ s ] .~ = u -> ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) )  | 
						
						
							| 56 | 
							
								
							 | 
							oveq2 | 
							 |-  ( [ s ] .~ = u -> ( b .x. [ s ] .~ ) = ( b .x. u ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							oveq2d | 
							 |-  ( [ s ] .~ = u -> ( a .x. ( b .x. [ s ] .~ ) ) = ( a .x. ( b .x. u ) ) )  | 
						
						
							| 58 | 
							
								55 57
							 | 
							eqeq12d | 
							 |-  ( [ s ] .~ = u -> ( ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							2ralbidv | 
							 |-  ( [ s ] .~ = u -> ( A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) )  | 
						
						
							| 60 | 
							
								54 59
							 | 
							anbi12d | 
							 |-  ( [ s ] .~ = u -> ( ( ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) <-> ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ph /\ s e. X ) -> ph )  | 
						
						
							| 62 | 
							
								3
							 | 
							adantr | 
							 |-  ( ( ph /\ s e. X ) -> H e. ( SubGrp ` G ) )  | 
						
						
							| 63 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` G ) = ( 0g ` G )  | 
						
						
							| 64 | 
							
								63
							 | 
							subg0cl | 
							 |-  ( H e. ( SubGrp ` G ) -> ( 0g ` G ) e. H )  | 
						
						
							| 65 | 
							
								62 64
							 | 
							syl | 
							 |-  ( ( ph /\ s e. X ) -> ( 0g ` G ) e. H )  | 
						
						
							| 66 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ s e. X ) -> s e. X )  | 
						
						
							| 67 | 
							
								1 2 3 4 5 6 7
							 | 
							sylow2blem1 | 
							 |-  ( ( ph /\ ( 0g ` G ) e. H /\ s e. X ) -> ( ( 0g ` G ) .x. [ s ] .~ ) = [ ( ( 0g ` G ) .+ s ) ] .~ )  | 
						
						
							| 68 | 
							
								61 65 66 67
							 | 
							syl3anc | 
							 |-  ( ( ph /\ s e. X ) -> ( ( 0g ` G ) .x. [ s ] .~ ) = [ ( ( 0g ` G ) .+ s ) ] .~ )  | 
						
						
							| 69 | 
							
								8 63
							 | 
							subg0 | 
							 |-  ( H e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` ( G |`s H ) ) )  | 
						
						
							| 70 | 
							
								62 69
							 | 
							syl | 
							 |-  ( ( ph /\ s e. X ) -> ( 0g ` G ) = ( 0g ` ( G |`s H ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							oveq1d | 
							 |-  ( ( ph /\ s e. X ) -> ( ( 0g ` G ) .x. [ s ] .~ ) = ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) )  | 
						
						
							| 72 | 
							
								1 5 63
							 | 
							grplid | 
							 |-  ( ( G e. Grp /\ s e. X ) -> ( ( 0g ` G ) .+ s ) = s )  | 
						
						
							| 73 | 
							
								29 72
							 | 
							sylan | 
							 |-  ( ( ph /\ s e. X ) -> ( ( 0g ` G ) .+ s ) = s )  | 
						
						
							| 74 | 
							
								73
							 | 
							eceq1d | 
							 |-  ( ( ph /\ s e. X ) -> [ ( ( 0g ` G ) .+ s ) ] .~ = [ s ] .~ )  | 
						
						
							| 75 | 
							
								68 71 74
							 | 
							3eqtr3d | 
							 |-  ( ( ph /\ s e. X ) -> ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ )  | 
						
						
							| 76 | 
							
								62
							 | 
							adantr | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> H e. ( SubGrp ` G ) )  | 
						
						
							| 77 | 
							
								76 28
							 | 
							syl | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> G e. Grp )  | 
						
						
							| 78 | 
							
								76 31
							 | 
							syl | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> H C_ X )  | 
						
						
							| 79 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> a e. H )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> a e. X )  | 
						
						
							| 81 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> b e. H )  | 
						
						
							| 82 | 
							
								78 81
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> b e. X )  | 
						
						
							| 83 | 
							
								66
							 | 
							adantr | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> s e. X )  | 
						
						
							| 84 | 
							
								1 5
							 | 
							grpass | 
							 |-  ( ( G e. Grp /\ ( a e. X /\ b e. X /\ s e. X ) ) -> ( ( a .+ b ) .+ s ) = ( a .+ ( b .+ s ) ) )  | 
						
						
							| 85 | 
							
								77 80 82 83 84
							 | 
							syl13anc | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( ( a .+ b ) .+ s ) = ( a .+ ( b .+ s ) ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							eceq1d | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> [ ( ( a .+ b ) .+ s ) ] .~ = [ ( a .+ ( b .+ s ) ) ] .~ )  | 
						
						
							| 87 | 
							
								61
							 | 
							adantr | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ph )  | 
						
						
							| 88 | 
							
								1 5
							 | 
							grpcl | 
							 |-  ( ( G e. Grp /\ b e. X /\ s e. X ) -> ( b .+ s ) e. X )  | 
						
						
							| 89 | 
							
								77 82 83 88
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( b .+ s ) e. X )  | 
						
						
							| 90 | 
							
								1 2 3 4 5 6 7
							 | 
							sylow2blem1 | 
							 |-  ( ( ph /\ a e. H /\ ( b .+ s ) e. X ) -> ( a .x. [ ( b .+ s ) ] .~ ) = [ ( a .+ ( b .+ s ) ) ] .~ )  | 
						
						
							| 91 | 
							
								87 79 89 90
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( a .x. [ ( b .+ s ) ] .~ ) = [ ( a .+ ( b .+ s ) ) ] .~ )  | 
						
						
							| 92 | 
							
								86 91
							 | 
							eqtr4d | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> [ ( ( a .+ b ) .+ s ) ] .~ = ( a .x. [ ( b .+ s ) ] .~ ) )  | 
						
						
							| 93 | 
							
								5
							 | 
							subgcl | 
							 |-  ( ( H e. ( SubGrp ` G ) /\ a e. H /\ b e. H ) -> ( a .+ b ) e. H )  | 
						
						
							| 94 | 
							
								76 79 81 93
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( a .+ b ) e. H )  | 
						
						
							| 95 | 
							
								1 2 3 4 5 6 7
							 | 
							sylow2blem1 | 
							 |-  ( ( ph /\ ( a .+ b ) e. H /\ s e. X ) -> ( ( a .+ b ) .x. [ s ] .~ ) = [ ( ( a .+ b ) .+ s ) ] .~ )  | 
						
						
							| 96 | 
							
								87 94 83 95
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( ( a .+ b ) .x. [ s ] .~ ) = [ ( ( a .+ b ) .+ s ) ] .~ )  | 
						
						
							| 97 | 
							
								1 2 3 4 5 6 7
							 | 
							sylow2blem1 | 
							 |-  ( ( ph /\ b e. H /\ s e. X ) -> ( b .x. [ s ] .~ ) = [ ( b .+ s ) ] .~ )  | 
						
						
							| 98 | 
							
								87 81 83 97
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( b .x. [ s ] .~ ) = [ ( b .+ s ) ] .~ )  | 
						
						
							| 99 | 
							
								98
							 | 
							oveq2d | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( a .x. ( b .x. [ s ] .~ ) ) = ( a .x. [ ( b .+ s ) ] .~ ) )  | 
						
						
							| 100 | 
							
								92 96 99
							 | 
							3eqtr4d | 
							 |-  ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							ralrimivva | 
							 |-  ( ( ph /\ s e. X ) -> A. a e. H A. b e. H ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) )  | 
						
						
							| 102 | 
							
								62 47
							 | 
							syl | 
							 |-  ( ( ph /\ s e. X ) -> H = ( Base ` ( G |`s H ) ) )  | 
						
						
							| 103 | 
							
								8 5
							 | 
							ressplusg | 
							 |-  ( H e. ( SubGrp ` G ) -> .+ = ( +g ` ( G |`s H ) ) )  | 
						
						
							| 104 | 
							
								3 103
							 | 
							syl | 
							 |-  ( ph -> .+ = ( +g ` ( G |`s H ) ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							oveqdr | 
							 |-  ( ( ph /\ s e. X ) -> ( a .+ b ) = ( a ( +g ` ( G |`s H ) ) b ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							oveq1d | 
							 |-  ( ( ph /\ s e. X ) -> ( ( a .+ b ) .x. [ s ] .~ ) = ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							eqeq1d | 
							 |-  ( ( ph /\ s e. X ) -> ( ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) )  | 
						
						
							| 108 | 
							
								102 107
							 | 
							raleqbidv | 
							 |-  ( ( ph /\ s e. X ) -> ( A. b e. H ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) )  | 
						
						
							| 109 | 
							
								102 108
							 | 
							raleqbidv | 
							 |-  ( ( ph /\ s e. X ) -> ( A. a e. H A. b e. H ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) )  | 
						
						
							| 110 | 
							
								101 109
							 | 
							mpbid | 
							 |-  ( ( ph /\ s e. X ) -> A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) )  | 
						
						
							| 111 | 
							
								75 110
							 | 
							jca | 
							 |-  ( ( ph /\ s e. X ) -> ( ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) )  | 
						
						
							| 112 | 
							
								23 60 111
							 | 
							ectocld | 
							 |-  ( ( ph /\ u e. ( X /. .~ ) ) -> ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							ralrimiva | 
							 |-  ( ph -> A. u e. ( X /. .~ ) ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) )  | 
						
						
							| 114 | 
							
								51 113
							 | 
							jca | 
							 |-  ( ph -> ( .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) /\ A. u e. ( X /. .~ ) ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) )  | 
						
						
							| 115 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` ( G |`s H ) ) = ( Base ` ( G |`s H ) )  | 
						
						
							| 116 | 
							
								
							 | 
							eqid | 
							 |-  ( +g ` ( G |`s H ) ) = ( +g ` ( G |`s H ) )  | 
						
						
							| 117 | 
							
								
							 | 
							eqid | 
							 |-  ( 0g ` ( G |`s H ) ) = ( 0g ` ( G |`s H ) )  | 
						
						
							| 118 | 
							
								115 116 117
							 | 
							isga | 
							 |-  ( .x. e. ( ( G |`s H ) GrpAct ( X /. .~ ) ) <-> ( ( ( G |`s H ) e. Grp /\ ( X /. .~ ) e. _V ) /\ ( .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) /\ A. u e. ( X /. .~ ) ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) ) )  | 
						
						
							| 119 | 
							
								17 114 118
							 | 
							sylanbrc | 
							 |-  ( ph -> .x. e. ( ( G |`s H ) GrpAct ( X /. .~ ) ) )  |