Step |
Hyp |
Ref |
Expression |
1 |
|
sylow2b.x |
|- X = ( Base ` G ) |
2 |
|
sylow2b.xf |
|- ( ph -> X e. Fin ) |
3 |
|
sylow2b.h |
|- ( ph -> H e. ( SubGrp ` G ) ) |
4 |
|
sylow2b.k |
|- ( ph -> K e. ( SubGrp ` G ) ) |
5 |
|
sylow2b.a |
|- .+ = ( +g ` G ) |
6 |
|
sylow2b.r |
|- .~ = ( G ~QG K ) |
7 |
|
sylow2b.m |
|- .x. = ( x e. H , y e. ( X /. .~ ) |-> ran ( z e. y |-> ( x .+ z ) ) ) |
8 |
|
eqid |
|- ( G |`s H ) = ( G |`s H ) |
9 |
8
|
subggrp |
|- ( H e. ( SubGrp ` G ) -> ( G |`s H ) e. Grp ) |
10 |
3 9
|
syl |
|- ( ph -> ( G |`s H ) e. Grp ) |
11 |
|
pwfi |
|- ( X e. Fin <-> ~P X e. Fin ) |
12 |
2 11
|
sylib |
|- ( ph -> ~P X e. Fin ) |
13 |
1 6
|
eqger |
|- ( K e. ( SubGrp ` G ) -> .~ Er X ) |
14 |
4 13
|
syl |
|- ( ph -> .~ Er X ) |
15 |
14
|
qsss |
|- ( ph -> ( X /. .~ ) C_ ~P X ) |
16 |
12 15
|
ssexd |
|- ( ph -> ( X /. .~ ) e. _V ) |
17 |
10 16
|
jca |
|- ( ph -> ( ( G |`s H ) e. Grp /\ ( X /. .~ ) e. _V ) ) |
18 |
|
vex |
|- y e. _V |
19 |
18
|
mptex |
|- ( z e. y |-> ( x .+ z ) ) e. _V |
20 |
19
|
rnex |
|- ran ( z e. y |-> ( x .+ z ) ) e. _V |
21 |
7 20
|
fnmpoi |
|- .x. Fn ( H X. ( X /. .~ ) ) |
22 |
21
|
a1i |
|- ( ph -> .x. Fn ( H X. ( X /. .~ ) ) ) |
23 |
|
eqid |
|- ( X /. .~ ) = ( X /. .~ ) |
24 |
|
oveq2 |
|- ( [ s ] .~ = v -> ( u .x. [ s ] .~ ) = ( u .x. v ) ) |
25 |
24
|
eleq1d |
|- ( [ s ] .~ = v -> ( ( u .x. [ s ] .~ ) e. ( X /. .~ ) <-> ( u .x. v ) e. ( X /. .~ ) ) ) |
26 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|- ( ( ph /\ u e. H /\ s e. X ) -> ( u .x. [ s ] .~ ) = [ ( u .+ s ) ] .~ ) |
27 |
6
|
ovexi |
|- .~ e. _V |
28 |
|
subgrcl |
|- ( H e. ( SubGrp ` G ) -> G e. Grp ) |
29 |
3 28
|
syl |
|- ( ph -> G e. Grp ) |
30 |
29
|
3ad2ant1 |
|- ( ( ph /\ u e. H /\ s e. X ) -> G e. Grp ) |
31 |
1
|
subgss |
|- ( H e. ( SubGrp ` G ) -> H C_ X ) |
32 |
3 31
|
syl |
|- ( ph -> H C_ X ) |
33 |
32
|
sselda |
|- ( ( ph /\ u e. H ) -> u e. X ) |
34 |
33
|
3adant3 |
|- ( ( ph /\ u e. H /\ s e. X ) -> u e. X ) |
35 |
|
simp3 |
|- ( ( ph /\ u e. H /\ s e. X ) -> s e. X ) |
36 |
1 5
|
grpcl |
|- ( ( G e. Grp /\ u e. X /\ s e. X ) -> ( u .+ s ) e. X ) |
37 |
30 34 35 36
|
syl3anc |
|- ( ( ph /\ u e. H /\ s e. X ) -> ( u .+ s ) e. X ) |
38 |
|
ecelqsg |
|- ( ( .~ e. _V /\ ( u .+ s ) e. X ) -> [ ( u .+ s ) ] .~ e. ( X /. .~ ) ) |
39 |
27 37 38
|
sylancr |
|- ( ( ph /\ u e. H /\ s e. X ) -> [ ( u .+ s ) ] .~ e. ( X /. .~ ) ) |
40 |
26 39
|
eqeltrd |
|- ( ( ph /\ u e. H /\ s e. X ) -> ( u .x. [ s ] .~ ) e. ( X /. .~ ) ) |
41 |
40
|
3expa |
|- ( ( ( ph /\ u e. H ) /\ s e. X ) -> ( u .x. [ s ] .~ ) e. ( X /. .~ ) ) |
42 |
23 25 41
|
ectocld |
|- ( ( ( ph /\ u e. H ) /\ v e. ( X /. .~ ) ) -> ( u .x. v ) e. ( X /. .~ ) ) |
43 |
42
|
ralrimiva |
|- ( ( ph /\ u e. H ) -> A. v e. ( X /. .~ ) ( u .x. v ) e. ( X /. .~ ) ) |
44 |
43
|
ralrimiva |
|- ( ph -> A. u e. H A. v e. ( X /. .~ ) ( u .x. v ) e. ( X /. .~ ) ) |
45 |
|
ffnov |
|- ( .x. : ( H X. ( X /. .~ ) ) --> ( X /. .~ ) <-> ( .x. Fn ( H X. ( X /. .~ ) ) /\ A. u e. H A. v e. ( X /. .~ ) ( u .x. v ) e. ( X /. .~ ) ) ) |
46 |
22 44 45
|
sylanbrc |
|- ( ph -> .x. : ( H X. ( X /. .~ ) ) --> ( X /. .~ ) ) |
47 |
8
|
subgbas |
|- ( H e. ( SubGrp ` G ) -> H = ( Base ` ( G |`s H ) ) ) |
48 |
3 47
|
syl |
|- ( ph -> H = ( Base ` ( G |`s H ) ) ) |
49 |
48
|
xpeq1d |
|- ( ph -> ( H X. ( X /. .~ ) ) = ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) ) |
50 |
49
|
feq2d |
|- ( ph -> ( .x. : ( H X. ( X /. .~ ) ) --> ( X /. .~ ) <-> .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) ) ) |
51 |
46 50
|
mpbid |
|- ( ph -> .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) ) |
52 |
|
oveq2 |
|- ( [ s ] .~ = u -> ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = ( ( 0g ` ( G |`s H ) ) .x. u ) ) |
53 |
|
id |
|- ( [ s ] .~ = u -> [ s ] .~ = u ) |
54 |
52 53
|
eqeq12d |
|- ( [ s ] .~ = u -> ( ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ <-> ( ( 0g ` ( G |`s H ) ) .x. u ) = u ) ) |
55 |
|
oveq2 |
|- ( [ s ] .~ = u -> ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) ) |
56 |
|
oveq2 |
|- ( [ s ] .~ = u -> ( b .x. [ s ] .~ ) = ( b .x. u ) ) |
57 |
56
|
oveq2d |
|- ( [ s ] .~ = u -> ( a .x. ( b .x. [ s ] .~ ) ) = ( a .x. ( b .x. u ) ) ) |
58 |
55 57
|
eqeq12d |
|- ( [ s ] .~ = u -> ( ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) |
59 |
58
|
2ralbidv |
|- ( [ s ] .~ = u -> ( A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) |
60 |
54 59
|
anbi12d |
|- ( [ s ] .~ = u -> ( ( ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) <-> ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) ) |
61 |
|
simpl |
|- ( ( ph /\ s e. X ) -> ph ) |
62 |
3
|
adantr |
|- ( ( ph /\ s e. X ) -> H e. ( SubGrp ` G ) ) |
63 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
64 |
63
|
subg0cl |
|- ( H e. ( SubGrp ` G ) -> ( 0g ` G ) e. H ) |
65 |
62 64
|
syl |
|- ( ( ph /\ s e. X ) -> ( 0g ` G ) e. H ) |
66 |
|
simpr |
|- ( ( ph /\ s e. X ) -> s e. X ) |
67 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|- ( ( ph /\ ( 0g ` G ) e. H /\ s e. X ) -> ( ( 0g ` G ) .x. [ s ] .~ ) = [ ( ( 0g ` G ) .+ s ) ] .~ ) |
68 |
61 65 66 67
|
syl3anc |
|- ( ( ph /\ s e. X ) -> ( ( 0g ` G ) .x. [ s ] .~ ) = [ ( ( 0g ` G ) .+ s ) ] .~ ) |
69 |
8 63
|
subg0 |
|- ( H e. ( SubGrp ` G ) -> ( 0g ` G ) = ( 0g ` ( G |`s H ) ) ) |
70 |
62 69
|
syl |
|- ( ( ph /\ s e. X ) -> ( 0g ` G ) = ( 0g ` ( G |`s H ) ) ) |
71 |
70
|
oveq1d |
|- ( ( ph /\ s e. X ) -> ( ( 0g ` G ) .x. [ s ] .~ ) = ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) ) |
72 |
1 5 63
|
grplid |
|- ( ( G e. Grp /\ s e. X ) -> ( ( 0g ` G ) .+ s ) = s ) |
73 |
29 72
|
sylan |
|- ( ( ph /\ s e. X ) -> ( ( 0g ` G ) .+ s ) = s ) |
74 |
73
|
eceq1d |
|- ( ( ph /\ s e. X ) -> [ ( ( 0g ` G ) .+ s ) ] .~ = [ s ] .~ ) |
75 |
68 71 74
|
3eqtr3d |
|- ( ( ph /\ s e. X ) -> ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ ) |
76 |
62
|
adantr |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> H e. ( SubGrp ` G ) ) |
77 |
76 28
|
syl |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> G e. Grp ) |
78 |
76 31
|
syl |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> H C_ X ) |
79 |
|
simprl |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> a e. H ) |
80 |
78 79
|
sseldd |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> a e. X ) |
81 |
|
simprr |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> b e. H ) |
82 |
78 81
|
sseldd |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> b e. X ) |
83 |
66
|
adantr |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> s e. X ) |
84 |
1 5
|
grpass |
|- ( ( G e. Grp /\ ( a e. X /\ b e. X /\ s e. X ) ) -> ( ( a .+ b ) .+ s ) = ( a .+ ( b .+ s ) ) ) |
85 |
77 80 82 83 84
|
syl13anc |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( ( a .+ b ) .+ s ) = ( a .+ ( b .+ s ) ) ) |
86 |
85
|
eceq1d |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> [ ( ( a .+ b ) .+ s ) ] .~ = [ ( a .+ ( b .+ s ) ) ] .~ ) |
87 |
61
|
adantr |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ph ) |
88 |
1 5
|
grpcl |
|- ( ( G e. Grp /\ b e. X /\ s e. X ) -> ( b .+ s ) e. X ) |
89 |
77 82 83 88
|
syl3anc |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( b .+ s ) e. X ) |
90 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|- ( ( ph /\ a e. H /\ ( b .+ s ) e. X ) -> ( a .x. [ ( b .+ s ) ] .~ ) = [ ( a .+ ( b .+ s ) ) ] .~ ) |
91 |
87 79 89 90
|
syl3anc |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( a .x. [ ( b .+ s ) ] .~ ) = [ ( a .+ ( b .+ s ) ) ] .~ ) |
92 |
86 91
|
eqtr4d |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> [ ( ( a .+ b ) .+ s ) ] .~ = ( a .x. [ ( b .+ s ) ] .~ ) ) |
93 |
5
|
subgcl |
|- ( ( H e. ( SubGrp ` G ) /\ a e. H /\ b e. H ) -> ( a .+ b ) e. H ) |
94 |
76 79 81 93
|
syl3anc |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( a .+ b ) e. H ) |
95 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|- ( ( ph /\ ( a .+ b ) e. H /\ s e. X ) -> ( ( a .+ b ) .x. [ s ] .~ ) = [ ( ( a .+ b ) .+ s ) ] .~ ) |
96 |
87 94 83 95
|
syl3anc |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( ( a .+ b ) .x. [ s ] .~ ) = [ ( ( a .+ b ) .+ s ) ] .~ ) |
97 |
1 2 3 4 5 6 7
|
sylow2blem1 |
|- ( ( ph /\ b e. H /\ s e. X ) -> ( b .x. [ s ] .~ ) = [ ( b .+ s ) ] .~ ) |
98 |
87 81 83 97
|
syl3anc |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( b .x. [ s ] .~ ) = [ ( b .+ s ) ] .~ ) |
99 |
98
|
oveq2d |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( a .x. ( b .x. [ s ] .~ ) ) = ( a .x. [ ( b .+ s ) ] .~ ) ) |
100 |
92 96 99
|
3eqtr4d |
|- ( ( ( ph /\ s e. X ) /\ ( a e. H /\ b e. H ) ) -> ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) |
101 |
100
|
ralrimivva |
|- ( ( ph /\ s e. X ) -> A. a e. H A. b e. H ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) |
102 |
62 47
|
syl |
|- ( ( ph /\ s e. X ) -> H = ( Base ` ( G |`s H ) ) ) |
103 |
8 5
|
ressplusg |
|- ( H e. ( SubGrp ` G ) -> .+ = ( +g ` ( G |`s H ) ) ) |
104 |
3 103
|
syl |
|- ( ph -> .+ = ( +g ` ( G |`s H ) ) ) |
105 |
104
|
oveqdr |
|- ( ( ph /\ s e. X ) -> ( a .+ b ) = ( a ( +g ` ( G |`s H ) ) b ) ) |
106 |
105
|
oveq1d |
|- ( ( ph /\ s e. X ) -> ( ( a .+ b ) .x. [ s ] .~ ) = ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) ) |
107 |
106
|
eqeq1d |
|- ( ( ph /\ s e. X ) -> ( ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) ) |
108 |
102 107
|
raleqbidv |
|- ( ( ph /\ s e. X ) -> ( A. b e. H ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) ) |
109 |
102 108
|
raleqbidv |
|- ( ( ph /\ s e. X ) -> ( A. a e. H A. b e. H ( ( a .+ b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) <-> A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) ) |
110 |
101 109
|
mpbid |
|- ( ( ph /\ s e. X ) -> A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) |
111 |
75 110
|
jca |
|- ( ( ph /\ s e. X ) -> ( ( ( 0g ` ( G |`s H ) ) .x. [ s ] .~ ) = [ s ] .~ /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. [ s ] .~ ) = ( a .x. ( b .x. [ s ] .~ ) ) ) ) |
112 |
23 60 111
|
ectocld |
|- ( ( ph /\ u e. ( X /. .~ ) ) -> ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) |
113 |
112
|
ralrimiva |
|- ( ph -> A. u e. ( X /. .~ ) ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) |
114 |
51 113
|
jca |
|- ( ph -> ( .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) /\ A. u e. ( X /. .~ ) ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) ) |
115 |
|
eqid |
|- ( Base ` ( G |`s H ) ) = ( Base ` ( G |`s H ) ) |
116 |
|
eqid |
|- ( +g ` ( G |`s H ) ) = ( +g ` ( G |`s H ) ) |
117 |
|
eqid |
|- ( 0g ` ( G |`s H ) ) = ( 0g ` ( G |`s H ) ) |
118 |
115 116 117
|
isga |
|- ( .x. e. ( ( G |`s H ) GrpAct ( X /. .~ ) ) <-> ( ( ( G |`s H ) e. Grp /\ ( X /. .~ ) e. _V ) /\ ( .x. : ( ( Base ` ( G |`s H ) ) X. ( X /. .~ ) ) --> ( X /. .~ ) /\ A. u e. ( X /. .~ ) ( ( ( 0g ` ( G |`s H ) ) .x. u ) = u /\ A. a e. ( Base ` ( G |`s H ) ) A. b e. ( Base ` ( G |`s H ) ) ( ( a ( +g ` ( G |`s H ) ) b ) .x. u ) = ( a .x. ( b .x. u ) ) ) ) ) ) |
119 |
17 114 118
|
sylanbrc |
|- ( ph -> .x. e. ( ( G |`s H ) GrpAct ( X /. .~ ) ) ) |