Step |
Hyp |
Ref |
Expression |
1 |
|
sylow3.x |
|- X = ( Base ` G ) |
2 |
|
sylow3.g |
|- ( ph -> G e. Grp ) |
3 |
|
sylow3.xf |
|- ( ph -> X e. Fin ) |
4 |
|
sylow3.p |
|- ( ph -> P e. Prime ) |
5 |
|
sylow3lem1.a |
|- .+ = ( +g ` G ) |
6 |
|
sylow3lem1.d |
|- .- = ( -g ` G ) |
7 |
|
sylow3lem1.m |
|- .(+) = ( x e. X , y e. ( P pSyl G ) |-> ran ( z e. y |-> ( ( x .+ z ) .- x ) ) ) |
8 |
|
sylow3lem2.k |
|- ( ph -> K e. ( P pSyl G ) ) |
9 |
|
sylow3lem2.h |
|- H = { u e. X | ( u .(+) K ) = K } |
10 |
|
sylow3lem2.n |
|- N = { x e. X | A. y e. X ( ( x .+ y ) e. K <-> ( y .+ x ) e. K ) } |
11 |
1 2 3 4 5 6 7 8 9 10
|
sylow3lem3 |
|- ( ph -> ( # ` ( P pSyl G ) ) = ( # ` ( X /. ( G ~QG N ) ) ) ) |
12 |
|
slwsubg |
|- ( K e. ( P pSyl G ) -> K e. ( SubGrp ` G ) ) |
13 |
8 12
|
syl |
|- ( ph -> K e. ( SubGrp ` G ) ) |
14 |
|
eqid |
|- ( G |`s N ) = ( G |`s N ) |
15 |
10 1 5 14
|
nmznsg |
|- ( K e. ( SubGrp ` G ) -> K e. ( NrmSGrp ` ( G |`s N ) ) ) |
16 |
|
nsgsubg |
|- ( K e. ( NrmSGrp ` ( G |`s N ) ) -> K e. ( SubGrp ` ( G |`s N ) ) ) |
17 |
15 16
|
syl |
|- ( K e. ( SubGrp ` G ) -> K e. ( SubGrp ` ( G |`s N ) ) ) |
18 |
13 17
|
syl |
|- ( ph -> K e. ( SubGrp ` ( G |`s N ) ) ) |
19 |
10 1 5
|
nmzsubg |
|- ( G e. Grp -> N e. ( SubGrp ` G ) ) |
20 |
2 19
|
syl |
|- ( ph -> N e. ( SubGrp ` G ) ) |
21 |
14
|
subgbas |
|- ( N e. ( SubGrp ` G ) -> N = ( Base ` ( G |`s N ) ) ) |
22 |
20 21
|
syl |
|- ( ph -> N = ( Base ` ( G |`s N ) ) ) |
23 |
1
|
subgss |
|- ( N e. ( SubGrp ` G ) -> N C_ X ) |
24 |
20 23
|
syl |
|- ( ph -> N C_ X ) |
25 |
3 24
|
ssfid |
|- ( ph -> N e. Fin ) |
26 |
22 25
|
eqeltrrd |
|- ( ph -> ( Base ` ( G |`s N ) ) e. Fin ) |
27 |
|
eqid |
|- ( Base ` ( G |`s N ) ) = ( Base ` ( G |`s N ) ) |
28 |
27
|
lagsubg |
|- ( ( K e. ( SubGrp ` ( G |`s N ) ) /\ ( Base ` ( G |`s N ) ) e. Fin ) -> ( # ` K ) || ( # ` ( Base ` ( G |`s N ) ) ) ) |
29 |
18 26 28
|
syl2anc |
|- ( ph -> ( # ` K ) || ( # ` ( Base ` ( G |`s N ) ) ) ) |
30 |
22
|
fveq2d |
|- ( ph -> ( # ` N ) = ( # ` ( Base ` ( G |`s N ) ) ) ) |
31 |
29 30
|
breqtrrd |
|- ( ph -> ( # ` K ) || ( # ` N ) ) |
32 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
33 |
32
|
subg0cl |
|- ( K e. ( SubGrp ` G ) -> ( 0g ` G ) e. K ) |
34 |
13 33
|
syl |
|- ( ph -> ( 0g ` G ) e. K ) |
35 |
34
|
ne0d |
|- ( ph -> K =/= (/) ) |
36 |
1
|
subgss |
|- ( K e. ( SubGrp ` G ) -> K C_ X ) |
37 |
13 36
|
syl |
|- ( ph -> K C_ X ) |
38 |
3 37
|
ssfid |
|- ( ph -> K e. Fin ) |
39 |
|
hashnncl |
|- ( K e. Fin -> ( ( # ` K ) e. NN <-> K =/= (/) ) ) |
40 |
38 39
|
syl |
|- ( ph -> ( ( # ` K ) e. NN <-> K =/= (/) ) ) |
41 |
35 40
|
mpbird |
|- ( ph -> ( # ` K ) e. NN ) |
42 |
41
|
nnzd |
|- ( ph -> ( # ` K ) e. ZZ ) |
43 |
|
hashcl |
|- ( N e. Fin -> ( # ` N ) e. NN0 ) |
44 |
25 43
|
syl |
|- ( ph -> ( # ` N ) e. NN0 ) |
45 |
44
|
nn0zd |
|- ( ph -> ( # ` N ) e. ZZ ) |
46 |
|
pwfi |
|- ( X e. Fin <-> ~P X e. Fin ) |
47 |
3 46
|
sylib |
|- ( ph -> ~P X e. Fin ) |
48 |
|
eqid |
|- ( G ~QG N ) = ( G ~QG N ) |
49 |
1 48
|
eqger |
|- ( N e. ( SubGrp ` G ) -> ( G ~QG N ) Er X ) |
50 |
20 49
|
syl |
|- ( ph -> ( G ~QG N ) Er X ) |
51 |
50
|
qsss |
|- ( ph -> ( X /. ( G ~QG N ) ) C_ ~P X ) |
52 |
47 51
|
ssfid |
|- ( ph -> ( X /. ( G ~QG N ) ) e. Fin ) |
53 |
|
hashcl |
|- ( ( X /. ( G ~QG N ) ) e. Fin -> ( # ` ( X /. ( G ~QG N ) ) ) e. NN0 ) |
54 |
52 53
|
syl |
|- ( ph -> ( # ` ( X /. ( G ~QG N ) ) ) e. NN0 ) |
55 |
54
|
nn0zd |
|- ( ph -> ( # ` ( X /. ( G ~QG N ) ) ) e. ZZ ) |
56 |
|
dvdscmul |
|- ( ( ( # ` K ) e. ZZ /\ ( # ` N ) e. ZZ /\ ( # ` ( X /. ( G ~QG N ) ) ) e. ZZ ) -> ( ( # ` K ) || ( # ` N ) -> ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) ) |
57 |
42 45 55 56
|
syl3anc |
|- ( ph -> ( ( # ` K ) || ( # ` N ) -> ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) ) |
58 |
31 57
|
mpd |
|- ( ph -> ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) |
59 |
|
hashcl |
|- ( X e. Fin -> ( # ` X ) e. NN0 ) |
60 |
3 59
|
syl |
|- ( ph -> ( # ` X ) e. NN0 ) |
61 |
60
|
nn0cnd |
|- ( ph -> ( # ` X ) e. CC ) |
62 |
41
|
nncnd |
|- ( ph -> ( # ` K ) e. CC ) |
63 |
41
|
nnne0d |
|- ( ph -> ( # ` K ) =/= 0 ) |
64 |
61 62 63
|
divcan1d |
|- ( ph -> ( ( ( # ` X ) / ( # ` K ) ) x. ( # ` K ) ) = ( # ` X ) ) |
65 |
1 48 20 3
|
lagsubg2 |
|- ( ph -> ( # ` X ) = ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) |
66 |
64 65
|
eqtrd |
|- ( ph -> ( ( ( # ` X ) / ( # ` K ) ) x. ( # ` K ) ) = ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` N ) ) ) |
67 |
58 66
|
breqtrrd |
|- ( ph -> ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( ( # ` X ) / ( # ` K ) ) x. ( # ` K ) ) ) |
68 |
1
|
lagsubg |
|- ( ( K e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` K ) || ( # ` X ) ) |
69 |
13 3 68
|
syl2anc |
|- ( ph -> ( # ` K ) || ( # ` X ) ) |
70 |
60
|
nn0zd |
|- ( ph -> ( # ` X ) e. ZZ ) |
71 |
|
dvdsval2 |
|- ( ( ( # ` K ) e. ZZ /\ ( # ` K ) =/= 0 /\ ( # ` X ) e. ZZ ) -> ( ( # ` K ) || ( # ` X ) <-> ( ( # ` X ) / ( # ` K ) ) e. ZZ ) ) |
72 |
42 63 70 71
|
syl3anc |
|- ( ph -> ( ( # ` K ) || ( # ` X ) <-> ( ( # ` X ) / ( # ` K ) ) e. ZZ ) ) |
73 |
69 72
|
mpbid |
|- ( ph -> ( ( # ` X ) / ( # ` K ) ) e. ZZ ) |
74 |
|
dvdsmulcr |
|- ( ( ( # ` ( X /. ( G ~QG N ) ) ) e. ZZ /\ ( ( # ` X ) / ( # ` K ) ) e. ZZ /\ ( ( # ` K ) e. ZZ /\ ( # ` K ) =/= 0 ) ) -> ( ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( ( # ` X ) / ( # ` K ) ) x. ( # ` K ) ) <-> ( # ` ( X /. ( G ~QG N ) ) ) || ( ( # ` X ) / ( # ` K ) ) ) ) |
75 |
55 73 42 63 74
|
syl112anc |
|- ( ph -> ( ( ( # ` ( X /. ( G ~QG N ) ) ) x. ( # ` K ) ) || ( ( ( # ` X ) / ( # ` K ) ) x. ( # ` K ) ) <-> ( # ` ( X /. ( G ~QG N ) ) ) || ( ( # ` X ) / ( # ` K ) ) ) ) |
76 |
67 75
|
mpbid |
|- ( ph -> ( # ` ( X /. ( G ~QG N ) ) ) || ( ( # ` X ) / ( # ` K ) ) ) |
77 |
1 3 8
|
slwhash |
|- ( ph -> ( # ` K ) = ( P ^ ( P pCnt ( # ` X ) ) ) ) |
78 |
77
|
oveq2d |
|- ( ph -> ( ( # ` X ) / ( # ` K ) ) = ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
79 |
76 78
|
breqtrd |
|- ( ph -> ( # ` ( X /. ( G ~QG N ) ) ) || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |
80 |
11 79
|
eqbrtrd |
|- ( ph -> ( # ` ( P pSyl G ) ) || ( ( # ` X ) / ( P ^ ( P pCnt ( # ` X ) ) ) ) ) |