Description: A double syllogism inference. (Contributed by Alan Sare, 20-Apr-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylsyld.1 | |- ( ph -> ps ) |
|
| sylsyld.2 | |- ( ph -> ( ch -> th ) ) |
||
| sylsyld.3 | |- ( ps -> ( th -> ta ) ) |
||
| Assertion | sylsyld | |- ( ph -> ( ch -> ta ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylsyld.1 | |- ( ph -> ps ) |
|
| 2 | sylsyld.2 | |- ( ph -> ( ch -> th ) ) |
|
| 3 | sylsyld.3 | |- ( ps -> ( th -> ta ) ) |
|
| 4 | 1 3 | syl | |- ( ph -> ( th -> ta ) ) |
| 5 | 2 4 | syld | |- ( ph -> ( ch -> ta ) ) |