Metamath Proof Explorer


Theorem symdif0

Description: Symmetric difference with the empty class. The empty class is the identity element for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdif0
|- ( A /_\ (/) ) = A

Proof

Step Hyp Ref Expression
1 df-symdif
 |-  ( A /_\ (/) ) = ( ( A \ (/) ) u. ( (/) \ A ) )
2 dif0
 |-  ( A \ (/) ) = A
3 0dif
 |-  ( (/) \ A ) = (/)
4 2 3 uneq12i
 |-  ( ( A \ (/) ) u. ( (/) \ A ) ) = ( A u. (/) )
5 un0
 |-  ( A u. (/) ) = A
6 1 4 5 3eqtri
 |-  ( A /_\ (/) ) = A