Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | symdifcom | |- ( A /_\ B ) = ( B /_\ A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uncom | |- ( ( A \ B ) u. ( B \ A ) ) = ( ( B \ A ) u. ( A \ B ) ) | |
| 2 | df-symdif | |- ( A /_\ B ) = ( ( A \ B ) u. ( B \ A ) ) | |
| 3 | df-symdif | |- ( B /_\ A ) = ( ( B \ A ) u. ( A \ B ) ) | |
| 4 | 1 2 3 | 3eqtr4i | |- ( A /_\ B ) = ( B /_\ A ) |