Description: Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | symdifcom | |- ( A /_\ B ) = ( B /_\ A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom | |- ( ( A \ B ) u. ( B \ A ) ) = ( ( B \ A ) u. ( A \ B ) ) |
|
2 | df-symdif | |- ( A /_\ B ) = ( ( A \ B ) u. ( B \ A ) ) |
|
3 | df-symdif | |- ( B /_\ A ) = ( ( B \ A ) u. ( A \ B ) ) |
|
4 | 1 2 3 | 3eqtr4i | |- ( A /_\ B ) = ( B /_\ A ) |