Metamath Proof Explorer


Theorem symdifeq1

Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifeq1
|- ( A = B -> ( A /_\ C ) = ( B /_\ C ) )

Proof

Step Hyp Ref Expression
1 difeq1
 |-  ( A = B -> ( A \ C ) = ( B \ C ) )
2 difeq2
 |-  ( A = B -> ( C \ A ) = ( C \ B ) )
3 1 2 uneq12d
 |-  ( A = B -> ( ( A \ C ) u. ( C \ A ) ) = ( ( B \ C ) u. ( C \ B ) ) )
4 df-symdif
 |-  ( A /_\ C ) = ( ( A \ C ) u. ( C \ A ) )
5 df-symdif
 |-  ( B /_\ C ) = ( ( B \ C ) u. ( C \ B ) )
6 3 4 5 3eqtr4g
 |-  ( A = B -> ( A /_\ C ) = ( B /_\ C ) )