Description: Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | symdifeq1 | |- ( A = B -> ( A /_\ C ) = ( B /_\ C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1 | |- ( A = B -> ( A \ C ) = ( B \ C ) ) |
|
2 | difeq2 | |- ( A = B -> ( C \ A ) = ( C \ B ) ) |
|
3 | 1 2 | uneq12d | |- ( A = B -> ( ( A \ C ) u. ( C \ A ) ) = ( ( B \ C ) u. ( C \ B ) ) ) |
4 | df-symdif | |- ( A /_\ C ) = ( ( A \ C ) u. ( C \ A ) ) |
|
5 | df-symdif | |- ( B /_\ C ) = ( ( B \ C ) u. ( C \ B ) ) |
|
6 | 3 4 5 | 3eqtr4g | |- ( A = B -> ( A /_\ C ) = ( B /_\ C ) ) |