Description: The symmetric difference of a class with itself is the empty class. (Contributed by Scott Fenton, 25-Apr-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | symdifid | |- ( A /_\ A ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-symdif | |- ( A /_\ A ) = ( ( A \ A ) u. ( A \ A ) ) |
|
2 | difid | |- ( A \ A ) = (/) |
|
3 | 2 2 | uneq12i | |- ( ( A \ A ) u. ( A \ A ) ) = ( (/) u. (/) ) |
4 | un0 | |- ( (/) u. (/) ) = (/) |
|
5 | 1 3 4 | 3eqtri | |- ( A /_\ A ) = (/) |