Metamath Proof Explorer


Theorem symdifv

Description: The symmetric difference with the universal class is the complement. (Contributed by Scott Fenton, 24-Apr-2012)

Ref Expression
Assertion symdifv
|- ( A /_\ _V ) = ( _V \ A )

Proof

Step Hyp Ref Expression
1 df-symdif
 |-  ( A /_\ _V ) = ( ( A \ _V ) u. ( _V \ A ) )
2 ssv
 |-  A C_ _V
3 ssdif0
 |-  ( A C_ _V <-> ( A \ _V ) = (/) )
4 2 3 mpbi
 |-  ( A \ _V ) = (/)
5 4 uneq1i
 |-  ( ( A \ _V ) u. ( _V \ A ) ) = ( (/) u. ( _V \ A ) )
6 uncom
 |-  ( (/) u. ( _V \ A ) ) = ( ( _V \ A ) u. (/) )
7 un0
 |-  ( ( _V \ A ) u. (/) ) = ( _V \ A )
8 6 7 eqtri
 |-  ( (/) u. ( _V \ A ) ) = ( _V \ A )
9 5 8 eqtri
 |-  ( ( A \ _V ) u. ( _V \ A ) ) = ( _V \ A )
10 1 9 eqtri
 |-  ( A /_\ _V ) = ( _V \ A )