Step |
Hyp |
Ref |
Expression |
1 |
|
symg1bas.1 |
|- G = ( SymGrp ` A ) |
2 |
|
symg1bas.2 |
|- B = ( Base ` G ) |
3 |
|
symg1bas.0 |
|- A = { I } |
4 |
1 2
|
symgbas |
|- B = { f | f : A -1-1-onto-> A } |
5 |
|
eqidd |
|- ( A = { I } -> p = p ) |
6 |
|
id |
|- ( A = { I } -> A = { I } ) |
7 |
5 6 6
|
f1oeq123d |
|- ( A = { I } -> ( p : A -1-1-onto-> A <-> p : { I } -1-1-onto-> { I } ) ) |
8 |
3 7
|
ax-mp |
|- ( p : A -1-1-onto-> A <-> p : { I } -1-1-onto-> { I } ) |
9 |
|
f1of |
|- ( p : { I } -1-1-onto-> { I } -> p : { I } --> { I } ) |
10 |
|
fsng |
|- ( ( I e. V /\ I e. V ) -> ( p : { I } --> { I } <-> p = { <. I , I >. } ) ) |
11 |
10
|
anidms |
|- ( I e. V -> ( p : { I } --> { I } <-> p = { <. I , I >. } ) ) |
12 |
9 11
|
syl5ib |
|- ( I e. V -> ( p : { I } -1-1-onto-> { I } -> p = { <. I , I >. } ) ) |
13 |
|
f1osng |
|- ( ( I e. V /\ I e. V ) -> { <. I , I >. } : { I } -1-1-onto-> { I } ) |
14 |
13
|
anidms |
|- ( I e. V -> { <. I , I >. } : { I } -1-1-onto-> { I } ) |
15 |
|
f1oeq1 |
|- ( p = { <. I , I >. } -> ( p : { I } -1-1-onto-> { I } <-> { <. I , I >. } : { I } -1-1-onto-> { I } ) ) |
16 |
14 15
|
syl5ibrcom |
|- ( I e. V -> ( p = { <. I , I >. } -> p : { I } -1-1-onto-> { I } ) ) |
17 |
12 16
|
impbid |
|- ( I e. V -> ( p : { I } -1-1-onto-> { I } <-> p = { <. I , I >. } ) ) |
18 |
8 17
|
syl5bb |
|- ( I e. V -> ( p : A -1-1-onto-> A <-> p = { <. I , I >. } ) ) |
19 |
|
vex |
|- p e. _V |
20 |
|
f1oeq1 |
|- ( f = p -> ( f : A -1-1-onto-> A <-> p : A -1-1-onto-> A ) ) |
21 |
19 20
|
elab |
|- ( p e. { f | f : A -1-1-onto-> A } <-> p : A -1-1-onto-> A ) |
22 |
|
velsn |
|- ( p e. { { <. I , I >. } } <-> p = { <. I , I >. } ) |
23 |
18 21 22
|
3bitr4g |
|- ( I e. V -> ( p e. { f | f : A -1-1-onto-> A } <-> p e. { { <. I , I >. } } ) ) |
24 |
23
|
eqrdv |
|- ( I e. V -> { f | f : A -1-1-onto-> A } = { { <. I , I >. } } ) |
25 |
4 24
|
eqtrid |
|- ( I e. V -> B = { { <. I , I >. } } ) |