Metamath Proof Explorer


Theorem symg1hash

Description: The symmetric group on a singleton has cardinality 1 . (Contributed by AV, 9-Dec-2018)

Ref Expression
Hypotheses symg1bas.1
|- G = ( SymGrp ` A )
symg1bas.2
|- B = ( Base ` G )
symg1bas.0
|- A = { I }
Assertion symg1hash
|- ( I e. V -> ( # ` B ) = 1 )

Proof

Step Hyp Ref Expression
1 symg1bas.1
 |-  G = ( SymGrp ` A )
2 symg1bas.2
 |-  B = ( Base ` G )
3 symg1bas.0
 |-  A = { I }
4 snfi
 |-  { I } e. Fin
5 3 4 eqeltri
 |-  A e. Fin
6 1 2 symghash
 |-  ( A e. Fin -> ( # ` B ) = ( ! ` ( # ` A ) ) )
7 5 6 ax-mp
 |-  ( # ` B ) = ( ! ` ( # ` A ) )
8 3 fveq2i
 |-  ( # ` A ) = ( # ` { I } )
9 hashsng
 |-  ( I e. V -> ( # ` { I } ) = 1 )
10 8 9 syl5eq
 |-  ( I e. V -> ( # ` A ) = 1 )
11 10 fveq2d
 |-  ( I e. V -> ( ! ` ( # ` A ) ) = ( ! ` 1 ) )
12 fac1
 |-  ( ! ` 1 ) = 1
13 11 12 eqtrdi
 |-  ( I e. V -> ( ! ` ( # ` A ) ) = 1 )
14 7 13 syl5eq
 |-  ( I e. V -> ( # ` B ) = 1 )