Step |
Hyp |
Ref |
Expression |
1 |
|
symg1bas.1 |
|- G = ( SymGrp ` A ) |
2 |
|
symg1bas.2 |
|- B = ( Base ` G ) |
3 |
|
symg2bas.0 |
|- A = { I , J } |
4 |
|
eqid |
|- ( SymGrp ` { J } ) = ( SymGrp ` { J } ) |
5 |
|
eqid |
|- ( Base ` ( SymGrp ` { J } ) ) = ( Base ` ( SymGrp ` { J } ) ) |
6 |
|
eqid |
|- { J } = { J } |
7 |
4 5 6
|
symg1bas |
|- ( J e. W -> ( Base ` ( SymGrp ` { J } ) ) = { { <. J , J >. } } ) |
8 |
7
|
ad2antll |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> ( Base ` ( SymGrp ` { J } ) ) = { { <. J , J >. } } ) |
9 |
|
df-pr |
|- { I , J } = ( { I } u. { J } ) |
10 |
|
sneq |
|- ( I = J -> { I } = { J } ) |
11 |
10
|
uneq1d |
|- ( I = J -> ( { I } u. { J } ) = ( { J } u. { J } ) ) |
12 |
11
|
adantr |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> ( { I } u. { J } ) = ( { J } u. { J } ) ) |
13 |
|
unidm |
|- ( { J } u. { J } ) = { J } |
14 |
12 13
|
eqtrdi |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> ( { I } u. { J } ) = { J } ) |
15 |
9 14
|
eqtrid |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { I , J } = { J } ) |
16 |
3 15
|
eqtrid |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> A = { J } ) |
17 |
16
|
fveq2d |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> ( SymGrp ` A ) = ( SymGrp ` { J } ) ) |
18 |
1 17
|
eqtrid |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> G = ( SymGrp ` { J } ) ) |
19 |
18
|
fveq2d |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> ( Base ` G ) = ( Base ` ( SymGrp ` { J } ) ) ) |
20 |
2 19
|
eqtrid |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> B = ( Base ` ( SymGrp ` { J } ) ) ) |
21 |
|
id |
|- ( I = J -> I = J ) |
22 |
21 21
|
opeq12d |
|- ( I = J -> <. I , I >. = <. J , J >. ) |
23 |
22
|
adantr |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> <. I , I >. = <. J , J >. ) |
24 |
23
|
preq1d |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } = { <. J , J >. , <. J , J >. } ) |
25 |
|
eqid |
|- <. J , J >. = <. J , J >. |
26 |
|
opex |
|- <. J , J >. e. _V |
27 |
26 26
|
preqsn |
|- ( { <. J , J >. , <. J , J >. } = { <. J , J >. } <-> ( <. J , J >. = <. J , J >. /\ <. J , J >. = <. J , J >. ) ) |
28 |
25 25 27
|
mpbir2an |
|- { <. J , J >. , <. J , J >. } = { <. J , J >. } |
29 |
24 28
|
eqtrdi |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } = { <. J , J >. } ) |
30 |
|
opeq1 |
|- ( I = J -> <. I , J >. = <. J , J >. ) |
31 |
|
opeq2 |
|- ( I = J -> <. J , I >. = <. J , J >. ) |
32 |
30 31
|
preq12d |
|- ( I = J -> { <. I , J >. , <. J , I >. } = { <. J , J >. , <. J , J >. } ) |
33 |
32 28
|
eqtrdi |
|- ( I = J -> { <. I , J >. , <. J , I >. } = { <. J , J >. } ) |
34 |
33
|
adantr |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , J >. , <. J , I >. } = { <. J , J >. } ) |
35 |
29 34
|
preq12d |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } = { { <. J , J >. } , { <. J , J >. } } ) |
36 |
|
eqid |
|- { <. J , J >. } = { <. J , J >. } |
37 |
|
snex |
|- { <. J , J >. } e. _V |
38 |
37 37
|
preqsn |
|- ( { { <. J , J >. } , { <. J , J >. } } = { { <. J , J >. } } <-> ( { <. J , J >. } = { <. J , J >. } /\ { <. J , J >. } = { <. J , J >. } ) ) |
39 |
36 36 38
|
mpbir2an |
|- { { <. J , J >. } , { <. J , J >. } } = { { <. J , J >. } } |
40 |
35 39
|
eqtrdi |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } = { { <. J , J >. } } ) |
41 |
8 20 40
|
3eqtr4d |
|- ( ( I = J /\ ( I e. V /\ J e. W ) ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) |
42 |
2
|
fvexi |
|- B e. _V |
43 |
42
|
a1i |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> B e. _V ) |
44 |
|
neqne |
|- ( -. I = J -> I =/= J ) |
45 |
44
|
anim2i |
|- ( ( ( I e. V /\ J e. W ) /\ -. I = J ) -> ( ( I e. V /\ J e. W ) /\ I =/= J ) ) |
46 |
|
df-3an |
|- ( ( I e. V /\ J e. W /\ I =/= J ) <-> ( ( I e. V /\ J e. W ) /\ I =/= J ) ) |
47 |
45 46
|
sylibr |
|- ( ( ( I e. V /\ J e. W ) /\ -. I = J ) -> ( I e. V /\ J e. W /\ I =/= J ) ) |
48 |
47
|
ancoms |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> ( I e. V /\ J e. W /\ I =/= J ) ) |
49 |
1 2 3
|
symg2hash |
|- ( ( I e. V /\ J e. W /\ I =/= J ) -> ( # ` B ) = 2 ) |
50 |
48 49
|
syl |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> ( # ` B ) = 2 ) |
51 |
|
id |
|- ( I e. V -> I e. V ) |
52 |
51
|
ancri |
|- ( I e. V -> ( I e. V /\ I e. V ) ) |
53 |
|
id |
|- ( J e. W -> J e. W ) |
54 |
53
|
ancri |
|- ( J e. W -> ( J e. W /\ J e. W ) ) |
55 |
52 54
|
anim12i |
|- ( ( I e. V /\ J e. W ) -> ( ( I e. V /\ I e. V ) /\ ( J e. W /\ J e. W ) ) ) |
56 |
|
df-ne |
|- ( I =/= J <-> -. I = J ) |
57 |
|
id |
|- ( I =/= J -> I =/= J ) |
58 |
57
|
ancri |
|- ( I =/= J -> ( I =/= J /\ I =/= J ) ) |
59 |
56 58
|
sylbir |
|- ( -. I = J -> ( I =/= J /\ I =/= J ) ) |
60 |
|
f1oprg |
|- ( ( ( I e. V /\ I e. V ) /\ ( J e. W /\ J e. W ) ) -> ( ( I =/= J /\ I =/= J ) -> { <. I , I >. , <. J , J >. } : { I , J } -1-1-onto-> { I , J } ) ) |
61 |
60
|
imp |
|- ( ( ( ( I e. V /\ I e. V ) /\ ( J e. W /\ J e. W ) ) /\ ( I =/= J /\ I =/= J ) ) -> { <. I , I >. , <. J , J >. } : { I , J } -1-1-onto-> { I , J } ) |
62 |
55 59 61
|
syl2anr |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } : { I , J } -1-1-onto-> { I , J } ) |
63 |
|
eqidd |
|- ( A = { I , J } -> { <. I , I >. , <. J , J >. } = { <. I , I >. , <. J , J >. } ) |
64 |
|
id |
|- ( A = { I , J } -> A = { I , J } ) |
65 |
63 64 64
|
f1oeq123d |
|- ( A = { I , J } -> ( { <. I , I >. , <. J , J >. } : A -1-1-onto-> A <-> { <. I , I >. , <. J , J >. } : { I , J } -1-1-onto-> { I , J } ) ) |
66 |
3 65
|
ax-mp |
|- ( { <. I , I >. , <. J , J >. } : A -1-1-onto-> A <-> { <. I , I >. , <. J , J >. } : { I , J } -1-1-onto-> { I , J } ) |
67 |
62 66
|
sylibr |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } : A -1-1-onto-> A ) |
68 |
|
prex |
|- { <. I , I >. , <. J , J >. } e. _V |
69 |
1 2
|
elsymgbas2 |
|- ( { <. I , I >. , <. J , J >. } e. _V -> ( { <. I , I >. , <. J , J >. } e. B <-> { <. I , I >. , <. J , J >. } : A -1-1-onto-> A ) ) |
70 |
68 69
|
ax-mp |
|- ( { <. I , I >. , <. J , J >. } e. B <-> { <. I , I >. , <. J , J >. } : A -1-1-onto-> A ) |
71 |
67 70
|
sylibr |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } e. B ) |
72 |
|
f1oprswap |
|- ( ( I e. V /\ J e. W ) -> { <. I , J >. , <. J , I >. } : { I , J } -1-1-onto-> { I , J } ) |
73 |
|
eqidd |
|- ( A = { I , J } -> { <. I , J >. , <. J , I >. } = { <. I , J >. , <. J , I >. } ) |
74 |
73 64 64
|
f1oeq123d |
|- ( A = { I , J } -> ( { <. I , J >. , <. J , I >. } : A -1-1-onto-> A <-> { <. I , J >. , <. J , I >. } : { I , J } -1-1-onto-> { I , J } ) ) |
75 |
3 74
|
ax-mp |
|- ( { <. I , J >. , <. J , I >. } : A -1-1-onto-> A <-> { <. I , J >. , <. J , I >. } : { I , J } -1-1-onto-> { I , J } ) |
76 |
72 75
|
sylibr |
|- ( ( I e. V /\ J e. W ) -> { <. I , J >. , <. J , I >. } : A -1-1-onto-> A ) |
77 |
76
|
adantl |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , J >. , <. J , I >. } : A -1-1-onto-> A ) |
78 |
|
prex |
|- { <. I , J >. , <. J , I >. } e. _V |
79 |
1 2
|
elsymgbas2 |
|- ( { <. I , J >. , <. J , I >. } e. _V -> ( { <. I , J >. , <. J , I >. } e. B <-> { <. I , J >. , <. J , I >. } : A -1-1-onto-> A ) ) |
80 |
78 79
|
ax-mp |
|- ( { <. I , J >. , <. J , I >. } e. B <-> { <. I , J >. , <. J , I >. } : A -1-1-onto-> A ) |
81 |
77 80
|
sylibr |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , J >. , <. J , I >. } e. B ) |
82 |
|
opex |
|- <. I , I >. e. _V |
83 |
82 26
|
pm3.2i |
|- ( <. I , I >. e. _V /\ <. J , J >. e. _V ) |
84 |
|
opex |
|- <. I , J >. e. _V |
85 |
|
opex |
|- <. J , I >. e. _V |
86 |
84 85
|
pm3.2i |
|- ( <. I , J >. e. _V /\ <. J , I >. e. _V ) |
87 |
83 86
|
pm3.2i |
|- ( ( <. I , I >. e. _V /\ <. J , J >. e. _V ) /\ ( <. I , J >. e. _V /\ <. J , I >. e. _V ) ) |
88 |
|
opthg2 |
|- ( ( I e. V /\ J e. W ) -> ( <. I , I >. = <. I , J >. <-> ( I = I /\ I = J ) ) ) |
89 |
|
eqtr |
|- ( ( I = I /\ I = J ) -> I = J ) |
90 |
88 89
|
syl6bi |
|- ( ( I e. V /\ J e. W ) -> ( <. I , I >. = <. I , J >. -> I = J ) ) |
91 |
90
|
necon3d |
|- ( ( I e. V /\ J e. W ) -> ( I =/= J -> <. I , I >. =/= <. I , J >. ) ) |
92 |
91
|
com12 |
|- ( I =/= J -> ( ( I e. V /\ J e. W ) -> <. I , I >. =/= <. I , J >. ) ) |
93 |
56 92
|
sylbir |
|- ( -. I = J -> ( ( I e. V /\ J e. W ) -> <. I , I >. =/= <. I , J >. ) ) |
94 |
93
|
imp |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> <. I , I >. =/= <. I , J >. ) |
95 |
52
|
adantr |
|- ( ( I e. V /\ J e. W ) -> ( I e. V /\ I e. V ) ) |
96 |
|
opthg |
|- ( ( I e. V /\ I e. V ) -> ( <. I , I >. = <. J , I >. <-> ( I = J /\ I = I ) ) ) |
97 |
95 96
|
syl |
|- ( ( I e. V /\ J e. W ) -> ( <. I , I >. = <. J , I >. <-> ( I = J /\ I = I ) ) ) |
98 |
|
simpl |
|- ( ( I = J /\ I = I ) -> I = J ) |
99 |
97 98
|
syl6bi |
|- ( ( I e. V /\ J e. W ) -> ( <. I , I >. = <. J , I >. -> I = J ) ) |
100 |
99
|
necon3d |
|- ( ( I e. V /\ J e. W ) -> ( I =/= J -> <. I , I >. =/= <. J , I >. ) ) |
101 |
100
|
com12 |
|- ( I =/= J -> ( ( I e. V /\ J e. W ) -> <. I , I >. =/= <. J , I >. ) ) |
102 |
56 101
|
sylbir |
|- ( -. I = J -> ( ( I e. V /\ J e. W ) -> <. I , I >. =/= <. J , I >. ) ) |
103 |
102
|
imp |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> <. I , I >. =/= <. J , I >. ) |
104 |
94 103
|
jca |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> ( <. I , I >. =/= <. I , J >. /\ <. I , I >. =/= <. J , I >. ) ) |
105 |
104
|
orcd |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> ( ( <. I , I >. =/= <. I , J >. /\ <. I , I >. =/= <. J , I >. ) \/ ( <. J , J >. =/= <. I , J >. /\ <. J , J >. =/= <. J , I >. ) ) ) |
106 |
|
prneimg |
|- ( ( ( <. I , I >. e. _V /\ <. J , J >. e. _V ) /\ ( <. I , J >. e. _V /\ <. J , I >. e. _V ) ) -> ( ( ( <. I , I >. =/= <. I , J >. /\ <. I , I >. =/= <. J , I >. ) \/ ( <. J , J >. =/= <. I , J >. /\ <. J , J >. =/= <. J , I >. ) ) -> { <. I , I >. , <. J , J >. } =/= { <. I , J >. , <. J , I >. } ) ) |
107 |
87 105 106
|
mpsyl |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> { <. I , I >. , <. J , J >. } =/= { <. I , J >. , <. J , I >. } ) |
108 |
|
hash2prd |
|- ( ( B e. _V /\ ( # ` B ) = 2 ) -> ( ( { <. I , I >. , <. J , J >. } e. B /\ { <. I , J >. , <. J , I >. } e. B /\ { <. I , I >. , <. J , J >. } =/= { <. I , J >. , <. J , I >. } ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) ) |
109 |
108
|
imp |
|- ( ( ( B e. _V /\ ( # ` B ) = 2 ) /\ ( { <. I , I >. , <. J , J >. } e. B /\ { <. I , J >. , <. J , I >. } e. B /\ { <. I , I >. , <. J , J >. } =/= { <. I , J >. , <. J , I >. } ) ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) |
110 |
43 50 71 81 107 109
|
syl23anc |
|- ( ( -. I = J /\ ( I e. V /\ J e. W ) ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) |
111 |
41 110
|
pm2.61ian |
|- ( ( I e. V /\ J e. W ) -> B = { { <. I , I >. , <. J , J >. } , { <. I , J >. , <. J , I >. } } ) |