Step |
Hyp |
Ref |
Expression |
1 |
|
symgbas.1 |
|- G = ( SymGrp ` A ) |
2 |
|
symgbas.2 |
|- B = ( Base ` G ) |
3 |
|
eqid |
|- { x | x : A -1-1-onto-> A } = { x | x : A -1-1-onto-> A } |
4 |
1 3
|
symgval |
|- G = ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) |
5 |
4
|
eqcomi |
|- ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) = G |
6 |
5
|
fveq2i |
|- ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) = ( Base ` G ) |
7 |
|
f1of |
|- ( x : A -1-1-onto-> A -> x : A --> A ) |
8 |
7
|
ss2abi |
|- { x | x : A -1-1-onto-> A } C_ { x | x : A --> A } |
9 |
|
eqid |
|- ( EndoFMnd ` A ) = ( EndoFMnd ` A ) |
10 |
|
eqid |
|- ( Base ` ( EndoFMnd ` A ) ) = ( Base ` ( EndoFMnd ` A ) ) |
11 |
9 10
|
efmndbasabf |
|- ( Base ` ( EndoFMnd ` A ) ) = { x | x : A --> A } |
12 |
8 11
|
sseqtrri |
|- { x | x : A -1-1-onto-> A } C_ ( Base ` ( EndoFMnd ` A ) ) |
13 |
|
eqid |
|- ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) = ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) |
14 |
13 10
|
ressbas2 |
|- ( { x | x : A -1-1-onto-> A } C_ ( Base ` ( EndoFMnd ` A ) ) -> { x | x : A -1-1-onto-> A } = ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) ) |
15 |
12 14
|
ax-mp |
|- { x | x : A -1-1-onto-> A } = ( Base ` ( ( EndoFMnd ` A ) |`s { x | x : A -1-1-onto-> A } ) ) |
16 |
6 15 2
|
3eqtr4ri |
|- B = { x | x : A -1-1-onto-> A } |