| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  (/) = (/) | 
						
							| 2 |  | f1o00 |  |-  ( f : (/) -1-1-onto-> (/) <-> ( f = (/) /\ (/) = (/) ) ) | 
						
							| 3 | 1 2 | mpbiran2 |  |-  ( f : (/) -1-1-onto-> (/) <-> f = (/) ) | 
						
							| 4 | 3 | abbii |  |-  { f | f : (/) -1-1-onto-> (/) } = { f | f = (/) } | 
						
							| 5 |  | eqid |  |-  ( SymGrp ` (/) ) = ( SymGrp ` (/) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` ( SymGrp ` (/) ) ) = ( Base ` ( SymGrp ` (/) ) ) | 
						
							| 7 | 5 6 | symgbas |  |-  ( Base ` ( SymGrp ` (/) ) ) = { f | f : (/) -1-1-onto-> (/) } | 
						
							| 8 |  | df-sn |  |-  { (/) } = { f | f = (/) } | 
						
							| 9 | 4 7 8 | 3eqtr4i |  |-  ( Base ` ( SymGrp ` (/) ) ) = { (/) } |