Metamath Proof Explorer


Theorem symgbasexOLD

Description: Obsolete as of 8-Aug-2024. B e. _V follows immediatly from fvex . (Contributed by AV, 30-Mar-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses symgbas.1
|- G = ( SymGrp ` A )
symgbas.2
|- B = ( Base ` G )
Assertion symgbasexOLD
|- ( A e. V -> B e. _V )

Proof

Step Hyp Ref Expression
1 symgbas.1
 |-  G = ( SymGrp ` A )
2 symgbas.2
 |-  B = ( Base ` G )
3 1 2 symgbas
 |-  B = { f | f : A -1-1-onto-> A }
4 permsetexOLD
 |-  ( A e. V -> { f | f : A -1-1-onto-> A } e. _V )
5 3 4 eqeltrid
 |-  ( A e. V -> B e. _V )