Description: Obsolete as of 8-Aug-2024. B e. _V follows immediatly from fvex . (Contributed by AV, 30-Mar-2024) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
symgbas.2 | |- B = ( Base ` G ) |
||
Assertion | symgbasexOLD | |- ( A e. V -> B e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
2 | symgbas.2 | |- B = ( Base ` G ) |
|
3 | 1 2 | symgbas | |- B = { f | f : A -1-1-onto-> A } |
4 | permsetexOLD | |- ( A e. V -> { f | f : A -1-1-onto-> A } e. _V ) |
|
5 | 3 4 | eqeltrid | |- ( A e. V -> B e. _V ) |