Description: A permutation (element of the symmetric group) is a function from a set into itself. (Contributed by AV, 1-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
symgbas.2 | |- B = ( Base ` G ) |
||
Assertion | symgbasf | |- ( F e. B -> F : A --> A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
2 | symgbas.2 | |- B = ( Base ` G ) |
|
3 | 1 2 | symgbasf1o | |- ( F e. B -> F : A -1-1-onto-> A ) |
4 | f1of | |- ( F : A -1-1-onto-> A -> F : A --> A ) |
|
5 | 3 4 | syl | |- ( F e. B -> F : A --> A ) |