Metamath Proof Explorer


Theorem symgbasf

Description: A permutation (element of the symmetric group) is a function from a set into itself. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses symgbas.1
|- G = ( SymGrp ` A )
symgbas.2
|- B = ( Base ` G )
Assertion symgbasf
|- ( F e. B -> F : A --> A )

Proof

Step Hyp Ref Expression
1 symgbas.1
 |-  G = ( SymGrp ` A )
2 symgbas.2
 |-  B = ( Base ` G )
3 1 2 symgbasf1o
 |-  ( F e. B -> F : A -1-1-onto-> A )
4 f1of
 |-  ( F : A -1-1-onto-> A -> F : A --> A )
5 3 4 syl
 |-  ( F e. B -> F : A --> A )