Description: Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
symgbas.2 | |- B = ( Base ` G ) |
||
Assertion | symgbasf1o | |- ( F e. B -> F : A -1-1-onto-> A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
2 | symgbas.2 | |- B = ( Base ` G ) |
|
3 | 1 2 | elsymgbas2 | |- ( F e. B -> ( F e. B <-> F : A -1-1-onto-> A ) ) |
4 | 3 | ibi | |- ( F e. B -> F : A -1-1-onto-> A ) |