Description: Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| symgbas.2 | |- B = ( Base ` G ) |
||
| Assertion | symgbasf1o | |- ( F e. B -> F : A -1-1-onto-> A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
| 2 | symgbas.2 | |- B = ( Base ` G ) |
|
| 3 | 1 2 | elsymgbas2 | |- ( F e. B -> ( F e. B <-> F : A -1-1-onto-> A ) ) |
| 4 | 3 | ibi | |- ( F e. B -> F : A -1-1-onto-> A ) |