Metamath Proof Explorer


Theorem symgbasf1o

Description: Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses symgbas.1
|- G = ( SymGrp ` A )
symgbas.2
|- B = ( Base ` G )
Assertion symgbasf1o
|- ( F e. B -> F : A -1-1-onto-> A )

Proof

Step Hyp Ref Expression
1 symgbas.1
 |-  G = ( SymGrp ` A )
2 symgbas.2
 |-  B = ( Base ` G )
3 1 2 elsymgbas2
 |-  ( F e. B -> ( F e. B <-> F : A -1-1-onto-> A ) )
4 3 ibi
 |-  ( F e. B -> F : A -1-1-onto-> A )