Metamath Proof Explorer


Theorem symgbasmap

Description: A permutation (element of the symmetric group) is a mapping (or set exponentiation) from a set into itself. (Contributed by AV, 30-Mar-2024)

Ref Expression
Hypotheses symgbas.1
|- G = ( SymGrp ` A )
symgbas.2
|- B = ( Base ` G )
Assertion symgbasmap
|- ( F e. B -> F e. ( A ^m A ) )

Proof

Step Hyp Ref Expression
1 symgbas.1
 |-  G = ( SymGrp ` A )
2 symgbas.2
 |-  B = ( Base ` G )
3 1 2 symgbasf
 |-  ( F e. B -> F : A --> A )
4 simpr
 |-  ( ( F e. B /\ F : A --> A ) -> F : A --> A )
5 dmfex
 |-  ( ( F e. B /\ F : A --> A ) -> A e. _V )
6 5 5 elmapd
 |-  ( ( F e. B /\ F : A --> A ) -> ( F e. ( A ^m A ) <-> F : A --> A ) )
7 4 6 mpbird
 |-  ( ( F e. B /\ F : A --> A ) -> F e. ( A ^m A ) )
8 3 7 mpdan
 |-  ( F e. B -> F e. ( A ^m A ) )