Description: A permutation (element of the symmetric group) is a mapping (or set exponentiation) from a set into itself. (Contributed by AV, 30-Mar-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgbas.1 | |- G = ( SymGrp ` A ) |
|
symgbas.2 | |- B = ( Base ` G ) |
||
Assertion | symgbasmap | |- ( F e. B -> F e. ( A ^m A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgbas.1 | |- G = ( SymGrp ` A ) |
|
2 | symgbas.2 | |- B = ( Base ` G ) |
|
3 | 1 2 | symgbasf | |- ( F e. B -> F : A --> A ) |
4 | simpr | |- ( ( F e. B /\ F : A --> A ) -> F : A --> A ) |
|
5 | dmfex | |- ( ( F e. B /\ F : A --> A ) -> A e. _V ) |
|
6 | 5 5 | elmapd | |- ( ( F e. B /\ F : A --> A ) -> ( F e. ( A ^m A ) <-> F : A --> A ) ) |
7 | 4 6 | mpbird | |- ( ( F e. B /\ F : A --> A ) -> F e. ( A ^m A ) ) |
8 | 3 7 | mpdan | |- ( F e. B -> F e. ( A ^m A ) ) |