Step |
Hyp |
Ref |
Expression |
1 |
|
symgext.s |
|- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
2 |
|
symgext.e |
|- E = ( x e. N |-> if ( x = K , K , ( Z ` x ) ) ) |
3 |
1 2
|
symgextfv |
|- ( ( K e. N /\ Z e. S ) -> ( i e. ( N \ { K } ) -> ( E ` i ) = ( Z ` i ) ) ) |
4 |
3
|
ralrimiv |
|- ( ( K e. N /\ Z e. S ) -> A. i e. ( N \ { K } ) ( E ` i ) = ( Z ` i ) ) |
5 |
1 2
|
symgextf |
|- ( ( K e. N /\ Z e. S ) -> E : N --> N ) |
6 |
5
|
ffnd |
|- ( ( K e. N /\ Z e. S ) -> E Fn N ) |
7 |
|
eqid |
|- ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) |
8 |
7 1
|
symgbasf |
|- ( Z e. S -> Z : ( N \ { K } ) --> ( N \ { K } ) ) |
9 |
8
|
ffnd |
|- ( Z e. S -> Z Fn ( N \ { K } ) ) |
10 |
9
|
adantl |
|- ( ( K e. N /\ Z e. S ) -> Z Fn ( N \ { K } ) ) |
11 |
|
difssd |
|- ( ( K e. N /\ Z e. S ) -> ( N \ { K } ) C_ N ) |
12 |
|
fvreseq1 |
|- ( ( ( E Fn N /\ Z Fn ( N \ { K } ) ) /\ ( N \ { K } ) C_ N ) -> ( ( E |` ( N \ { K } ) ) = Z <-> A. i e. ( N \ { K } ) ( E ` i ) = ( Z ` i ) ) ) |
13 |
6 10 11 12
|
syl21anc |
|- ( ( K e. N /\ Z e. S ) -> ( ( E |` ( N \ { K } ) ) = Z <-> A. i e. ( N \ { K } ) ( E ` i ) = ( Z ` i ) ) ) |
14 |
4 13
|
mpbird |
|- ( ( K e. N /\ Z e. S ) -> ( E |` ( N \ { K } ) ) = Z ) |