Step |
Hyp |
Ref |
Expression |
1 |
|
symgfixf.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
2 |
|
symgfixf.q |
|- Q = { q e. P | ( q ` K ) = K } |
3 |
|
fveq1 |
|- ( f = F -> ( f ` K ) = ( F ` K ) ) |
4 |
3
|
eqeq1d |
|- ( f = F -> ( ( f ` K ) = K <-> ( F ` K ) = K ) ) |
5 |
|
fveq1 |
|- ( q = f -> ( q ` K ) = ( f ` K ) ) |
6 |
5
|
eqeq1d |
|- ( q = f -> ( ( q ` K ) = K <-> ( f ` K ) = K ) ) |
7 |
6
|
cbvrabv |
|- { q e. P | ( q ` K ) = K } = { f e. P | ( f ` K ) = K } |
8 |
2 7
|
eqtri |
|- Q = { f e. P | ( f ` K ) = K } |
9 |
4 8
|
elrab2 |
|- ( F e. Q <-> ( F e. P /\ ( F ` K ) = K ) ) |
10 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
11 |
10 1
|
elsymgbas2 |
|- ( F e. V -> ( F e. P <-> F : N -1-1-onto-> N ) ) |
12 |
11
|
anbi1d |
|- ( F e. V -> ( ( F e. P /\ ( F ` K ) = K ) <-> ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) ) |
13 |
9 12
|
syl5bb |
|- ( F e. V -> ( F e. Q <-> ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) ) |