Metamath Proof Explorer


Theorem symgfixf

Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a function. (Contributed by AV, 4-Jan-2019)

Ref Expression
Hypotheses symgfixf.p
|- P = ( Base ` ( SymGrp ` N ) )
symgfixf.q
|- Q = { q e. P | ( q ` K ) = K }
symgfixf.s
|- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
symgfixf.h
|- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) )
Assertion symgfixf
|- ( K e. N -> H : Q --> S )

Proof

Step Hyp Ref Expression
1 symgfixf.p
 |-  P = ( Base ` ( SymGrp ` N ) )
2 symgfixf.q
 |-  Q = { q e. P | ( q ` K ) = K }
3 symgfixf.s
 |-  S = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
4 symgfixf.h
 |-  H = ( q e. Q |-> ( q |` ( N \ { K } ) ) )
5 eqid
 |-  ( N \ { K } ) = ( N \ { K } )
6 1 2 3 5 symgfixelsi
 |-  ( ( K e. N /\ q e. Q ) -> ( q |` ( N \ { K } ) ) e. S )
7 6 4 fmptd
 |-  ( K e. N -> H : Q --> S )