Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a function. (Contributed by AV, 4-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
||
symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
||
symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
||
Assertion | symgfixf | |- ( K e. N -> H : Q --> S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
2 | symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
|
3 | symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
4 | symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
|
5 | eqid | |- ( N \ { K } ) = ( N \ { K } ) |
|
6 | 1 2 3 5 | symgfixelsi | |- ( ( K e. N /\ q e. Q ) -> ( q |` ( N \ { K } ) ) e. S ) |
7 | 6 4 | fmptd | |- ( K e. N -> H : Q --> S ) |