Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
||
symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
||
symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
||
Assertion | symgfixf1o | |- ( ( N e. V /\ K e. N ) -> H : Q -1-1-onto-> S ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
2 | symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
|
3 | symgfixf.s | |- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
4 | symgfixf.h | |- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) ) |
|
5 | 1 2 3 4 | symgfixf1 | |- ( K e. N -> H : Q -1-1-> S ) |
6 | 5 | adantl | |- ( ( N e. V /\ K e. N ) -> H : Q -1-1-> S ) |
7 | 1 2 3 4 | symgfixfo | |- ( ( N e. V /\ K e. N ) -> H : Q -onto-> S ) |
8 | df-f1o | |- ( H : Q -1-1-onto-> S <-> ( H : Q -1-1-> S /\ H : Q -onto-> S ) ) |
|
9 | 6 7 8 | sylanbrc | |- ( ( N e. V /\ K e. N ) -> H : Q -1-1-onto-> S ) |