Metamath Proof Explorer


Theorem symgfixf1o

Description: The mapping of a permutation of a set fixing an element to a permutation of the set without the fixed element is a bijection. (Contributed by AV, 7-Jan-2019)

Ref Expression
Hypotheses symgfixf.p
|- P = ( Base ` ( SymGrp ` N ) )
symgfixf.q
|- Q = { q e. P | ( q ` K ) = K }
symgfixf.s
|- S = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
symgfixf.h
|- H = ( q e. Q |-> ( q |` ( N \ { K } ) ) )
Assertion symgfixf1o
|- ( ( N e. V /\ K e. N ) -> H : Q -1-1-onto-> S )

Proof

Step Hyp Ref Expression
1 symgfixf.p
 |-  P = ( Base ` ( SymGrp ` N ) )
2 symgfixf.q
 |-  Q = { q e. P | ( q ` K ) = K }
3 symgfixf.s
 |-  S = ( Base ` ( SymGrp ` ( N \ { K } ) ) )
4 symgfixf.h
 |-  H = ( q e. Q |-> ( q |` ( N \ { K } ) ) )
5 1 2 3 4 symgfixf1
 |-  ( K e. N -> H : Q -1-1-> S )
6 5 adantl
 |-  ( ( N e. V /\ K e. N ) -> H : Q -1-1-> S )
7 1 2 3 4 symgfixfo
 |-  ( ( N e. V /\ K e. N ) -> H : Q -onto-> S )
8 df-f1o
 |-  ( H : Q -1-1-onto-> S <-> ( H : Q -1-1-> S /\ H : Q -onto-> S ) )
9 6 7 8 sylanbrc
 |-  ( ( N e. V /\ K e. N ) -> H : Q -1-1-onto-> S )