Metamath Proof Explorer


Theorem symgfv

Description: The function value of a permutation. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses symgbas.1
|- G = ( SymGrp ` A )
symgbas.2
|- B = ( Base ` G )
Assertion symgfv
|- ( ( F e. B /\ X e. A ) -> ( F ` X ) e. A )

Proof

Step Hyp Ref Expression
1 symgbas.1
 |-  G = ( SymGrp ` A )
2 symgbas.2
 |-  B = ( Base ` G )
3 1 2 symgbasf
 |-  ( F e. B -> F : A --> A )
4 3 ffvelrnda
 |-  ( ( F e. B /\ X e. A ) -> ( F ` X ) e. A )